Muscle development is independent of innervation during Drosophila embryogenesis

Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 533-543 ◽  
Author(s):  
K. Broadie ◽  
M. Bate

We have examined the role of innervation in directing embryonic myogenesis, using a mutant (prospero), which delays the pioneering of peripheral motor nerves of the Drosophila embryo. In the absence of motor nerves, myoblasts fuse normally to form syncytial myotubes, myotubes form normal attachments to the epidermis, and a larval musculature comparable to the wild-type pattern is generated and maintained. Likewise, the twist-expressing myoblasts that prefigure the adult musculature segregate normally in the absence of motor nerves, migrate to their final embryonic positions and continue to express twist until the end of embryonic development. In the absence of motor nerves, myotubes uncouple at the correct developmental stage to form single cells. Subsequently, uninnervated myotubes develop the mature electrical and contractile properties of larval muscles with a time course indistinguishable from normally innervated myotubes. We conclude that innervation plays no role in the patterning, morphogenesis, maintenance or physiological development of the somatic muscles in the Drosophila embryo.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
L.H. Frank ◽  
C. Rushlow

The amnioserosa is an extraembryonic, epithelial tissue that covers the dorsal side of the Drosophila embryo. The initial development of the amnioserosa is controlled by the dorsoventral patterning genes. Here we show that a group of genes, which we refer to as the U-shaped-group (ush-group), is required for maintenance of the amnioserosa tissue once it has differentiated. Using several molecular markers, we examined amnioserosa development in the ush-group mutants: u-shaped (ush), hindsight (hnt), serpent (srp) and tail-up (tup). Our results show that the amnioserosa in these mutants is specified correctly and begins to differentiate as in wild type. However, following germ-band extension, there is a premature loss of the amnioserosa. We demonstrate that this cell loss is a consequence of programmed cell death (apoptosis) in ush, hnt and srp, but not in tup. We discuss the role of the ush-group genes in maintaining the amnioserosa's viability. We also discuss a possible role for the amnioserosa in germ-band retraction in light of these mutants' unretracted phenotype.


1993 ◽  
Vol 264 (2) ◽  
pp. C464-C470 ◽  
Author(s):  
S. Fukayama ◽  
A. H. Tashjian ◽  
F. R. Bringhurst

We have used wild-type and adenosine 3',5'-cyclic monophosphate (cAMP)-resistant mutant osteoblast-like SaOS-2 cells to investigate the role of protein kinase A (PKA) in the regulation of cytosolic free Ca2+ concentration ([Ca2+]i). Basal levels of [Ca2+]i were the same in wild-type (127 +/- 6.1 nM) and transfected (117 +/- 6.8 nM) SaOS-2 cells, although 45Ca2+ efflux was slower in the transfected cells. In wild-type cells, thapsigargin (TG, > or = 200 nM), an inhibitor of the Ca(2+)-ATPase activity of the endoplasmic reticulum, acutely increased [Ca2+]i (by up to 2-fold), which then returned promptly to basal [Ca2+]i. In cAMP-resistant cells, TG elicited a significantly greater acute rise in [Ca2+]i, which then decayed to an elevated plateau level. In mutant cells, high concentrations of dibutyryladenosine 3',5'-cyclic monophosphate, which overcome the PKA blockade, restored the changes in [Ca2+]i to the wild-type pattern. In cAMP-resistant, TG-blocked cells, ionomycin (or alpha-thrombin) induced a further elevation in [Ca2+]i, which then declined rapidly to the original basal level. We conclude that basal PKA activity is involved actively in regulation of [Ca2+]i in SaOS-2 cells by promoting Ca2+ efflux from the cell and, possibly, by inhibiting Ca2+ release from or stimulating net Ca2+ sequestration into the ER. We have also obtained evidence for an alternate Ca(2+)-triggered Ca2+ reuptake mechanism in SaOS-2 cells that is not dependent on either Ca(2+)-ATPase or PKA.


2001 ◽  
Vol 28 (4) ◽  
pp. 307 ◽  
Author(s):  
Adriana Chiappetta ◽  
Walter de Witte ◽  
Milvia L. Racchi ◽  
Maria B. Bitonti ◽  
Henri van Onckelen ◽  
...  

The distribution of cytokinins is strongly altered in seedlings of the shootless ed*41 mutant of maize (Zea mays L.), compared with wild-type. Immunolocalisation of zeatin and analysis of cytokinin levels clearly indicate that these hormones are not present in the shoot apex zone of the mutant. Since an anomalous differentiation of vascular tissues has also been observed in the mutant, a major role of vascular connection in hormone translocation affecting development of the shoot apical meristem is proposed. Immunolocalisation of zeatin was confined to the root cap, cortex and vascular tissues of both mutant and wild-type seedlings suggesting a tissue-specific synthesis of this hormone in the root. A time-course of cytokinin distribution in the wild-type developing shoot provided evidence that the tunica and corpus zones become competent to respond to cytokinins in subsequent periods, very probably in conjunction with photomorphogenesis. On the contrary, this pathway is totally disrupted in the mutant. Taken together, the data point to a relationship between the ed*41 mutation, inadequate vascular connection and disrupted hormone translocation.


2013 ◽  
Vol 79 (13) ◽  
pp. 3967-3973 ◽  
Author(s):  
Shannon M. Hinsa-Leasure ◽  
Cassandra Koid ◽  
James M. Tiedje ◽  
Janna N. Schultzhaus

ABSTRACTPsychrobacter arcticusstrain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt.P. arcticusis also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation byP. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame ascat1, for cold attachment gene 1. Thecat1mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined thatcat1mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments,cat1mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-36
Author(s):  
Jessica M Salmon ◽  
Casie Leigh Reed ◽  
Maddyson Bender ◽  
Helen Lorraine Mitchell ◽  
Vanessa Fox ◽  
...  

Krüppel-like factors (KLFs) are a family of transcription factors that play essential roles in the development and differentiation of the hematopoietic system. These transcription factors possess highly conserved C-terminal zinc-finger motifs, which enable their binding to GC-rich, or CACC-box, motifs in promoter and enhancer regions of target genes. The N-terminal domains of these proteins are more varied and mediate the recruitment of various co-factors, which can form a complex with either activator or repressor function. Acting primarily as a gene repressor through its recruitment of CtBPs and histone deacetylases (HDACs) [1], we have recently shown that KLF3 competes with KLF1 bound sites in the genome to repress gene expression during erythropoiesis [2]. However, the function of Klf3 in other lineages has been less well studied. This widely expressed transcription factor has reported roles in the differentiation of marginal zone B cells, eosinophil function and inflammation [3]. We utilised the Klf3-null mouse model [4] to more closely examine the role of Klf3 in innate inflammatory cells. These mice exhibit elevated white cell counts, including monocytes (Figure 1A), and inflammation of the skin. Conditional knockout of Klf4 in myeloid cells leads to a deficiency of inflammatory macrophages [5]. To test our hypothesis KLF3 normally represses inflammation, perhaps by antagonising the action of KLF4, bone-marrow derived macrophages (BMDM) were generated from wild-type or Klf3-null mice and stimulated with the bacterial toxin lipopolysaccharide (LPS). In wild type BMDM, LPS induces Klf3 gene expression and activation then delayed repression of target genes such as Lgals3 (galectin-3) over a 21 hour time course (Figure 1B). Quantitative real-time PCR and mRNA-seq of WT v Klf3-null macrophages identified ~100 differentially expressed genes involved in proliferation, macrophage activation and inflammation. We transduced the monocyte cell line, RAW264.7 (that expresses Klf4, Klf3 and Klf2), with a retroviral vector expressing a tamoxifen-inducible KLF3-ER fusion construct. KLF3 induced cell cycle arrest and macrophage differentiation. We will report on KLF3-induced gene expression changes (repression and activation), and ChIP-seq for KLF3, in RAW cells. The results shed light on the mechanism by which KLF3 normally represses monocyte/macrophage responses to infection. This study highlights the importance of key transcriptional regulators that tightly control gene expression during inflammation. Loss of Klf3 leads to alterations in this process, resulting in hyper-activation of inflammatory macrophages, increased white cell counts and inflammation of the skin. A greater knowledge of the inflammatory process and how it is regulated is important for our understanding of acute infection and inflammatory disease. Further studies are planned to investigate the role of the KLF3 transcription factor in response to inflammation in vivo. References: 1. Pearson, R., et al., Kruppel-like transcription factors: A functional family. Int J Biochem Cell Biol, 2007. W2. Ilsley, M.D., et al., Kruppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res, 2017. 45(11): p. 6572-6588. W3. Knights, A.J., et al., Kruppel-like factor 3 (KLF3) suppresses NF-kappaB-driven inflammation in mice. J Biol Chem, 2020. 295(18): p. 6080-6091. W4. Sue, N., et al., Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol, 2008. 28(12): p. 3967-78. W5. Alder, J.K., et al., Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol, 2008. 180(8): p. 5645-52. Figure 1: Elevated WCC (A) and inflammatory markers (B) in BMDM after LPS stimulation. 1. Total WCC in adult mice (3-6 months old) of the indicated genotypes. There is a statistically significant increase in the WCC in Klf3-/- v wild type mice (P<0.001 by student's t test). B. Time course (hours) after LPS stimulation of confluent BMDM. Klf3 is induced 3-fold by LPS and KLF3-target genes such as Lgals3 are not fully repressed by 21 hours in knockout mice. Figure 1 Disclosures Perkins: Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
pp. mcp.RA120.002166 ◽  
Author(s):  
Ronnie Blazev ◽  
Christopher Ashwood ◽  
Jodie L Abrahams ◽  
Long H Chung ◽  
Deanne Francis ◽  
...  

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development but our molecular understanding of the precise glycans, catalytic enzymes and lectins involved remain only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown di-galactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labelling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins most notably the up-regulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the up-regulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.


2019 ◽  
Vol 28 (24) ◽  
pp. 4186-4196 ◽  
Author(s):  
Mo Zhao ◽  
Lindsay Smith ◽  
Jonathan Volpatti ◽  
Lacramioara Fabian ◽  
James J Dowling

Abstract Dynamin 2 (DNM2) encodes a ubiquitously expressed large GTPase with membrane fission capabilities that participates in the endocytosis of clathrin-coated vesicles. Heterozygous mutations in DNM2 are associated with two distinct neuromuscular disorders, Charcot–Marie–Tooth disease (CMT) and autosomal dominant centronuclear myopathy (CNM). Despite extensive investigations in cell culture, the role of dynamin 2 in normal muscle development is poorly understood and the consequences of DNM2 mutations at the molecular level in vivo are not known. To address these gaps in knowledge, we developed transgenic zebrafish expressing either wild-type dynamin 2 or dynamin 2 with either a CNM or CMT mutation. Taking advantage of the live imaging capabilities of the zebrafish embryo, we establish the localization of wild-type and mutant dynamin 2 in vivo, showing for the first time distinctive dynamin 2 subcellular compartments. Additionally, we demonstrate that CNM-related DNM2 mutations are associated with protein mislocalization and aggregation. Lastly, we define core phenotypes associated with our transgenic mutant fish, including impaired motor function and altered muscle ultrastructure, making them the ideal platform for drug screening. Overall, using the power of the zebrafish, we establish novel insights into dynamin 2 localization and dynamics and provide the necessary groundwork for future studies examining dynamin 2 pathomechanisms and therapy development.


2003 ◽  
Vol 285 (6) ◽  
pp. L1255-L1262 ◽  
Author(s):  
Michael J. Segel ◽  
Gabriel Izbicki ◽  
Pazit Y. Cohen ◽  
Reuven Or ◽  
Thomas G. Christensen ◽  
...  

IFN-γ production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-γ expression in bleomycin-induced lung injury. IFN-γ mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-γ protein levels were increased at 6 days, as was the percentage of LC expressing IFN-γ. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-γ production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-γ production by these cells. To define the role of endogenous IFN-γ in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-γ gene (IFN-γ knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-γ knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-γ production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-γ in IFN-γ knockout mice does not increase pulmonary fibrosis. Endogenous IFN-γ may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Amanda Maple ◽  
Rachel E. Lackie ◽  
Diana I. Elizalde ◽  
Stephanie L. Grella ◽  
Chelsey C. Damphousse ◽  
...  

The dentate gyrus (DG) engages in sustainedArctranscription for at least 8 hours following behavioral induction, and this time course may be functionally coupled to the unique role of the DG in hippocampus-dependent learning and memory. The factors that regulate long-term DGArcexpression, however, remain poorly understood. Animals lackingEgr3show lessArcexpression following convulsive stimulation, but the effect ofEgr3ablation on behaviorally inducedArcremains unknown. To address this,Egr3−/−and wild-type (WT) mice explored novel spatial environments and were sacrificed either immediately or after 5, 60, 240, or 480 minutes, andArcexpression was quantified by fluorescence in situ hybridization. Although short-term (i.e., within 60 min)Arcexpression was equivalent across genotypes, DGArcexpression was selectively reduced at 240 and 480 minutes in mice lackingEgr3. These data demonstrate the involvement ofEgr3in regulating the late protein-dependent phase ofArcexpression in the DG.


1995 ◽  
Vol 131 (6) ◽  
pp. 1495-1506 ◽  
Author(s):  
D C Shutt ◽  
D Wessels ◽  
K Wagenknecht ◽  
A Chandrasekhar ◽  
A L Hitt ◽  
...  

Ponticulin is a 17-kD glycoprotein that represents a major high affinity link between the plasma membrane and the cortical actin network of Dictyostelium. To assess the role of ponticulin in pseudopod extension and retraction, the motile behavior of two independently generated mutants lacking ponticulin was analyzed using computer-assisted two- and three-dimensional motion analysis systems. More than half of the lateral pseudopods formed off the substratum by ponticulin-minus cells slipped relative to the substratum during extension and retraction. In contrast, all pseudopods formed off the substratum by wild-type cells were positionally fixed in relation to the substratum. Ponticulin-minus cells also formed a greater proportion of both anterior and lateral pseudopods off the substratum and absorbed a greater proportion of lateral pseudopods into the uropod than wild-type cells. In a spatial gradient of cAMP, ponticulin-minus cells were less efficient in tracking the source of chemoattractant. Since ponticulin-minus cells extend and retract pseudopods with the same time course as wild-type cells, these behavioral defects in ponticulin-minus cells appear to be the consequence of pseudopod slippage. These results demonstrate that pseudopods formed off the substratum by wild-type cells are positionally fixed in relation to the substratum, that ponticulin is required for positional stabilization, and that the loss of ponticulin and the concomitant loss of positional stability of pseudopods correlate with a decrease in the efficiency of chemotaxis.


Sign in / Sign up

Export Citation Format

Share Document