Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors

Development ◽  
2002 ◽  
Vol 129 (17) ◽  
pp. 4065-4074
Author(s):  
Isabelle Foucher ◽  
Michel Volovitch ◽  
Monique Frain ◽  
J. Julie Kim ◽  
Jean-Claude Souberbielle ◽  
...  

Transgenic mice expressing the homeobox gene Hoxa5 under the control of Hoxb2 regulatory elements present a growth arrest during weeks two and three of postnatal development, resulting in proportionate dwarfism. These mice present a liver phenotype illustrated by a 12-fold increase in liver insulin-like growth factor binding protein 1 (IGFBP1) mRNA and a 50% decrease in liver insulin-like growth factor 1 (IGF1) mRNA correlated with a 50% decrease in circulating IGF1. We show that the Hoxa5 transgene is expressed in the liver of these mice, leading to an overexpression of total (endogenous plus transgene) Hoxa5 mRNA in this tissue. We have used several cell lines to investigate a possible physiological interaction of Hoxa5 with the main regulator of IGFBP1 promoter activity, the Forkhead box transcription factor FKHR. In HepG2 cells, Hoxa5 has little effect by itself but inhibits the FKHR-dependent activation of the IGFBP1 promoter. In HuF cells, Hoxa5 cooperates with FKHR to dramatically enhance IGFBP1 promoter activity. This context-dependent physiological interaction probably corresponds to the existence of a direct interaction between Hoxa5 and FKHR and FoxA2/HNF3β, as demonstrated by pull-down experiments achieved either in vitro or after cellular co-expression. In conclusion, we propose that the impaired growth observed in this transgenic line relates to a liver phenotype best explained by a direct interaction between Hoxa5 and liver-specific Forkhead box transcription factors, in particular FKHR but also Foxa2/HNF3β. Because Hoxa5 and homeogenes of the same paralog group are normally expressed in the liver, the present results raise the possibility that homeoproteins, in addition to their established role during early development, regulate systemic physiological functions.

1989 ◽  
Vol 9 (2) ◽  
pp. 396-405 ◽  
Author(s):  
M Pech ◽  
C D Rao ◽  
K C Robbins ◽  
S A Aaronson

Human platelet-derived growth factor (PDGF) is composed of two polypeptide chains, PDGF-1 and PDGF-2, the human homolog of the v-sis oncogene. Deregulation of PDGF-2 expression can confer a growth advantage to cells possessing the cognate receptor and, thus, may contribute to the malignant phenotype. We investigated the regulation of PDGF-2 mRNA expression during megakaryocytic differentiation of K562 cells. Induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a greater than 200-fold increase in PDGF-2 transcript levels in these cells. Induction was dependent on protein synthesis and was not enhanced by cycloheximide exposure. In our initial investigation of the PDGF-2 promoter, a minimal promoter region, which included sequences extending only 42 base pairs upstream of the TATA signal, was found to be as efficient as 4 kilobase pairs upstream of the TATA signal in driving expression of a reporter gene in uninduced K562 cells. We also functionally identified different regulatory sequence elements of the PDGF-2 promoter in TPA-induced K562 cells. One region acted as a transcriptional silencer, while another region was necessary for maximal activity of the promoter in megakaryoblasts. This region was shown to bind nuclear factors and was the target for trans-activation in normal and tumor cells. In one tumor cell line, which expressed high PDGF-2 mRNA levels, the presence of the positive regulatory region resulted in a 30-fold increase in promoter activity. However, the ability of the minimal PDGF-2 promoter to drive reporter gene expression in uninduced K562 cells and normal fibroblasts, which contained no detectable PDGF-2 transcripts, implies the existence of other negative control mechanisms beyond the regulation of promoter activity.


1989 ◽  
Vol 9 (2) ◽  
pp. 396-405
Author(s):  
M Pech ◽  
C D Rao ◽  
K C Robbins ◽  
S A Aaronson

Human platelet-derived growth factor (PDGF) is composed of two polypeptide chains, PDGF-1 and PDGF-2, the human homolog of the v-sis oncogene. Deregulation of PDGF-2 expression can confer a growth advantage to cells possessing the cognate receptor and, thus, may contribute to the malignant phenotype. We investigated the regulation of PDGF-2 mRNA expression during megakaryocytic differentiation of K562 cells. Induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a greater than 200-fold increase in PDGF-2 transcript levels in these cells. Induction was dependent on protein synthesis and was not enhanced by cycloheximide exposure. In our initial investigation of the PDGF-2 promoter, a minimal promoter region, which included sequences extending only 42 base pairs upstream of the TATA signal, was found to be as efficient as 4 kilobase pairs upstream of the TATA signal in driving expression of a reporter gene in uninduced K562 cells. We also functionally identified different regulatory sequence elements of the PDGF-2 promoter in TPA-induced K562 cells. One region acted as a transcriptional silencer, while another region was necessary for maximal activity of the promoter in megakaryoblasts. This region was shown to bind nuclear factors and was the target for trans-activation in normal and tumor cells. In one tumor cell line, which expressed high PDGF-2 mRNA levels, the presence of the positive regulatory region resulted in a 30-fold increase in promoter activity. However, the ability of the minimal PDGF-2 promoter to drive reporter gene expression in uninduced K562 cells and normal fibroblasts, which contained no detectable PDGF-2 transcripts, implies the existence of other negative control mechanisms beyond the regulation of promoter activity.


2019 ◽  
Vol 105 (1) ◽  
pp. 327-335
Author(s):  
Elie Hobeika ◽  
Marah Armouti ◽  
Michele A Fierro ◽  
Nichola Winston ◽  
Humberto Scoccia ◽  
...  

Abstract Context Human granulosa cells (hGCs) produce and respond to insulin-like growth factor 2 (IGF2) but whether the oocyte participates in IGF2 regulation in humans is unknown. Objective To determine the role of oocyte-secreted factors (OSFs) such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in IGF2 production by hGCs. Design Primary human cumulus GCs in culture. Setting University infertility center. Patients or Other Participants GCs of women undergoing in vitro fertilization. Intervention(s) Cells treated with GDF9 and BMP15 in the presence of vehicle, follicle-stimulating hormone (FSH), dibutyryl cyclic-AMP (dbcAMP), or mothers against decapentaplegic homolog (SMAD) inhibitors. Main Outcome Measure(s) Quantification of mRNA, protein, promoter activity, and DNA methylation. Results FSH stimulation of IGF2 (protein and mRNA) was significantly potentiated by the GDF9 and BMP15 (G+B) combination (P < 0.0001) in a concentration-dependent manner showing a maximal effect at 5 ng/mL each. However, GDF9 or BMP15 alone or in combination (G+B) have no effect on IGF2 in the absence of FSH. FSH stimulated IGF2 promoter 3 activity, but G+B had no effect on promoter activity. G+B potentiated IGF2 stimulation by cAMP. SMAD3 inhibitors inhibited G+B enhancement of IGF2 stimulation by FSH (P < 0.05) but had no effect on FSH induction. Moreover, inhibition of insulin-like growth factor receptor partially blocked G+B potentiation of FSH actions (P < 0.009). Conclusions For the first time, we show that the oocyte actively participates in the regulation of IGF2 expression in hGCs, an effect that is mediated by the specific combination of G+B via SMAD2/3, which in turn target mechanisms downstream of the FSH receptor.


2001 ◽  
Vol 155 (5) ◽  
pp. 809-820 ◽  
Author(s):  
Shinichiro Taya ◽  
Naoyuki Inagaki ◽  
Hiroaki Sengiku ◽  
Hiroshi Makino ◽  
Akihiro Iwamatsu ◽  
...  

Insulin-like growth factor (IGF)-1 plays crucial roles in growth control and rearrangements of the cytoskeleton. IGF-1 binds to the IGF-1 receptor and thereby induces the autophosphorylation of this receptor at its tyrosine residues. The phosphorylation of the IGF-1 receptor is thought to initiate a cascade of events. Although various signaling molecules have been identified, they appear to interact with the tyrosine-phosphorylated IGF-1 receptor. Here, we identified leukemia-associated Rho guanine nucleotide exchange factor (GEF) (LARG), which contains the PSD-95/Dlg/ZO-1 (PDZ), regulator of G protein signaling (RGS), Dbl homology, and pleckstrin homology domains, as a nonphosphorylated IGF-1 receptor-interacting molecule. LARG formed a complex with the IGF-1 receptor in vivo, and the PDZ domain of LARG interacted directly with the COOH-terminal domain of IGF-1 receptor in vitro. LARG had an exchange activity for Rho in vitro and induced the formation of stress fibers in NIH 3T3 fibroblasts. When MDCKII epithelial cells were treated with IGF-1, Rho and its effector Rho-associated kinase (Rho-kinase) were activated and actin stress fibers were enhanced. Furthermore, the IGF-1–induced Rho-kinase activation and the enhancement of stress fibers were inhibited by ectopic expression of the PDZ and RGS domains of LARG. Taken together, these results indicate that IGF-1 activates the Rho/Rho-kinase pathway via a LARG/IGF-1 receptor complex and thereby regulates cytoskeletal rearrangements.


1998 ◽  
Vol 330 (2) ◽  
pp. 923-932 ◽  
Author(s):  
P. Anatolii KOVAL ◽  
A. Vicky BLAKESLEY ◽  
T. Charles ROBERTS ◽  
Yehiel ZICK ◽  
Derek LeROITH

The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein. We have previously demonstrated that Crk-II becomes rapidly tyrosine-phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) and might be involved in the IGF-I receptor signalling pathway. To determine whether this involvement includes the direct interaction of Crk-II with the cytoplasmic region of the receptor, studies were performed in vitro with glutathione S-transferase (GST) fusion proteins containing various domains of Crk-II. The kinase assay in vitro showed that activated IGF-I receptors efficiently phosphorylated the GST-Crk-II fusion protein. This phosphorylation was dependent on the presence of the SH2 domain and Tyr-221 located in the spacer region between the two SH3 domains. Mutation of Tyr-221 not only prevented phosphorylation of GST-Crk in vitro, but also significantly increased the ability of GST-Crk proteins to co-precipitate activated IGF-I receptors from total cell lysates. Additional binding experiments in vitro showed that Crk-II might interact with the phosphorylated IGF-I receptor through its SH2 domain. To elucidate which region of the IGF-I receptor interacts with Crk-II, a peptide association assay was used in vitro. Different domains of the IGF-I receptor were expressed as (His)6-tagged fusion peptides, phosphorylated with activated wheat germ agglutinin-purified IGF-I receptors and tested for association with GST-Crk-II fusion proteins. Using wild-type as well as mutated peptides, we showed that the SH2 domain of Crk-II preferentially binds the peptide encoding the juxtamembrane region of the IGF-I receptor. Phosphorylation of Tyr-950 and Tyr-943 of the receptor is important for this interaction. These findings allow us to propose a model of direct interaction of Crk-II and the IGF-I receptor in vivo. On activation of the IGF-I receptor, Crk-II binds to phosphorylated tyrosine residues, especially in the juxtamembrane region. As a result of this binding, the IGF-I receptor kinase phosphorylates Tyr-221 of Crk-II, resulting in a change in intramolecular folding and binding of the SH2 domain to the phosphorylated Tyr-221, which causes rapid disassociation of the Crk-II-IGF-I receptor complex.


Sign in / Sign up

Export Citation Format

Share Document