scholarly journals Snx3 is important for mammalian neural tube closure via its role in canonical and non-canonical WNT signaling

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev192518 ◽  
Author(s):  
Heather Mary Brown ◽  
Stephen A. Murray ◽  
Hope Northrup ◽  
Kit Sing Au ◽  
Lee A. Niswander

ABSTRACTDisruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3−/− mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3−/− embryos and a defect in convergent extension of the neural epithelium. Snx3−/− cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3−/− embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1198 ◽  
Author(s):  
Wang ◽  
Marco ◽  
Capra ◽  
Kibar

Neural tube defects (NTDs), including spina bifida and anencephaly, represent the most severe and common malformations of the central nervous system affecting 0.7–3 per 1000 live births. They result from the failure of neural tube closure during the first few weeks of pregnancy. They have a complex etiology that implicate a large number of genetic and environmental factors that remain largely undetermined. Extensive studies in vertebrate models have strongly implicated the non-canonical Wnt/planar cell polarity (PCP) signaling pathway in the pathogenesis of NTDs. The defects in this pathway lead to a defective convergent extension that is a major morphogenetic process essential for neural tube elongation and subsequent closure. A large number of genetic studies in human NTDs have demonstrated an important role of PCP signaling in their etiology. However, the relative contribution of this pathway to this complex etiology awaits a better picture of the complete genetic architecture of these defects. The emergence of new genome technologies and bioinformatics pipelines, complemented with the powerful tool of animal models for variant interpretation as well as significant collaborative efforts, will help to dissect the complex genetics of NTDs. The ultimate goal is to develop better preventive and counseling strategies for families affected by these devastating conditions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3420-3420
Author(s):  
Ya-Wei Qiang ◽  
Shmuel Yaccoby ◽  
John D. Shaughnessy

Wnt signaling is a highly conserved signal transduction pathway involved in embryonic development. Inappropriate canonical Wnt signaling resulting in beta-catenin stabilization, is associated with several types of human cancers. Multiple myeloma plasma cells express Wnt receptors, Wnt ligands and soluble Wnt inhibitors. Wnt signaling is central to osteoblast and osteoclasts development and secretion of Wnt signaling inhibitors by myeloma cells is thought to contribute to the osteolytic phenotype seen in this disease and prostate cancer. While it is now clear that MM cells can signal through both canonical and non-canonical mechanisms, there are conflicting data as to the direct role of Wnt signaling in myeloma cell biology. Others have shown that Wnts cause proliferation of myeloma cells; while we have shown that canonical Wnts cause morphological changes and migration, but not cell proliferation. To further elucidate the role of canonical Wnt signaling in myeloma and myeloma bone disease we used limiting dilutions in the presence of G418 to create two independent stable clones of the myeloma cell line NCI-H929 expressing Wnt-3A (H929/W3A), which is not expressed in myeloma, and an empty vector (H929/EV). Because Wnt antibodies are not available we cloned Wnt-3A as a fusion protein with hemagglutinin (HA). Western blots against HA revealed a positive band of the expected size only in the H929/W3A clones. GST-E-cadherin binding assay and Western blot analysis revealed elevated levels of total and free beta-catenin in H929/W3A relative to H929/EV, however, there this was not associated with increased growth or proliferation by MTT assay. To determine the in-vivo growth characteristics and effects on bone resorption of Wnt-3A producing cells, we transplanted the lines into a human bone implanted the flank of SCID mice. Tumor growth rate as determined by increased production of human immunoglobulin in mice serum was significantly slower in the Wnt-3A transfected cells relative to controls (P < .05). Loss of bone mineral density (BMD) of the implanted bones engrafted with H929/W3A cells was lower than in bones engrafted with H929/EV cells (P < .05). Reduced tumor burden and BMD loss was also visualized on x-ray radiographs. Taken together these data indicate that all factors promoting bone resorption produced by or elicited by the myeloma cell line H929 are subordinate to canonical Wnt signaling and that prevention of bone destruction may help control myeloma progression.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2398-2398
Author(s):  
Elena K Siapati ◽  
Magda Papadaki ◽  
Zoi Kozaou ◽  
Erasmia Rouka ◽  
Evridiki Michali ◽  
...  

Abstract Abstract 2398 Poster Board II-375 B-catenin is the central effector molecule of the canonical wnt signaling pathway which governs cell fate and differentiation during embryogenesis as well as self-renewal of hematopoietic stem cells. Deregulation of the pathway has been observed in various malignancies including myeloid leukemias where over-expression of β-catenin is an independent adverse prognostic factor. In the present study we examined the functional outcome of stable β-catenin down-regulation through lentivirus-mediated expression of short hairpin RNA (shRNA). Reduction of the β-catenin levels in AML cell lines and patient samples diminished their in vitro proliferation ability without significantly affecting cell viability. In order to study the role of β-catenin in vivo, we transplanted leukemic cell lines with control or reduced levels of β-catenin in NOD/SCID animals and analyzed the engraftment levels in the bone marrow. We observed that while the immediate homing of the cells was not affected by the β-catenin levels, the bone marrow engraftment was directly dependent on its levels. Subsequent examination of bone marrow sections revealed that the reduced engraftment was partly due to the inability of the cells with lower β-catenin levels to dock to the endosteal niches, a finding that was confirmed in competitive repopulation assays with untransduced cells. When we examined the expression levels of adhesion molecules and integrins in engrafted cells in vivo, we observed a significant down-regulation of CD44 expression, a molecule that participates in the interaction of HSCs with the niche. Gene expression analysis of the components of the wnt signaling pathway showed that the pathway is subject to tight transcriptional regulation with minor expression deviations. We did, however, observe an up-regulation in components that participate in the non-canonical wnt signaling pathways such as the WNT5B ligand. Ongoing experiments in normal cord blood CD34+ cells will determine the in vivo role of β-catenin signaling in normal hematopoietic progenitors. In conclusion, our study showed that β-catenin comprises an integral part in the development and progression of AML in vivo, indicating that manipulation of the wnt pathway may hold a therapeutic potential in the management of AML. Disclosures: No relevant conflicts of interest to declare.


EBioMedicine ◽  
2015 ◽  
Vol 2 (6) ◽  
pp. 513-527 ◽  
Author(s):  
Chiharu Kimura-Yoshida ◽  
Kyoko Mochida ◽  
Kristina Ellwanger ◽  
Christof Niehrs ◽  
Isao Matsuo

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 556-556 ◽  
Author(s):  
Maulin Mukeshchandra Patel ◽  
Robert Silasi-Mansat ◽  
Ravi Shankar Keshari ◽  
Christopher L. Sansam ◽  
David A. Jones ◽  
...  

Abstract We used in vitro and in vivo models to characterize the physiological role of the novel protein encoded by C6ORF105. This gene's expression is androgen-responsive, and the encoded protein is predicted to be palmitoylated and membrane multi-spanning. Previously we showed that C6ORF105 expression co-regulates with tissue factor pathway inhibitor (TFPI)in human endothelial cells (EC); hence we named this protein "androgen-dependent TFPI-regulating protein" (ADTRP). Using in vitro cell-based TOP-Flash reporter assay we identified ADTRP as a negative regulator of canonical Wnt signaling in human cells. Overexpressing ADTRP in HEK293T cells inhibited the activity of beta-catenin/TCF-dependent transcriptional reporter, while silencing ADTRP increased the expression of Wnt target genes LEF-1, AXIN-2, IL-8 and DKK-2 in EA.hy926 EC line and HUVEC. Addition of LiCl showed that the effect of ADTRP was upstream of GSK3, therefore we focused the investigations on the Wnt signalosome proteins. ADTRP expression in HEK293T cells led to decreased phosphorylation of Wnt co-receptor LRP6, suggesting that ADTRP can affect this critical membrane-located event of Wnt signaling. Furthermore, ADTRP expression in reporter cells transfected with a constitutively phosphorylated form of LRP6 (LRP6DN mutant) inhibited Wnt3a- induced signaling, which suggests that ADTRP can interfere with events downstream of LRP6 phosphorylation, such as Axin-2 binding. Altogether, these data indicate that the Wnt signaling inhibitory activity of ADTRP takes place at the plasma membrane level. Site directed mutagenesis of the predicted palmitoylation site Cys61 showed that Wnt inhibitory effects of ADTRP require palmitoyl-mediated anchoring, highlighting the importance of proper membrane location of ADTRP for Wnt pathway inhibition. In vivo morpholino-based knockdown of adtrp in zebrafish embryos produced aberrant angiogenesis, defective branching and ruptured vessels, hemorrhage spots, pericardial edema and slow heart-beat, all reminiscent of defects caused by activation of canonical Wnt signaling. Indeed, adtrp knock down increased Wnt mediated lef-1 and pax-2a as well as mmp2 and mmp9 mRNA expression. Co-injection of ADTRP mRNA partially recovered the adtrp morpholino- induced morphologic abnormalities. Also, knock down of adtrp in a Wnt reporter zebrafish showed increased expression of ectopic Wnt signaling. Furthermore, our recently established Adtrp-/- mice also display some typical Wnt-mediated vascular defects, including: (i) abnormal patterning, increased capillary tortuosity, abnormal branching and increased density of the capillary network; (ii) dilated vessels, especially venules and veins; (iii) increased leakeage of permeability tracers (Evans blue and fluorescent dextran) without evident changes in endothelial junctions; (iv) hemorrhage spots in the skin, meningeal layers, heart, bladder and kidneys; (v) intravascular and interstitial fibrin deposition in the lung, liver and kidney. ADTRP deficiency decreased plasma TFPI antigen by ~2-times. Furthermore, TFPI antigen and anticoagulant activity in lung extracts and isolated lung EC were similarly decreased, which confirms our previous in vitro data. We aslo noticed increased tail bleeding time (>500 sec vs. 200 sec in WT littermates) and blood volume loss, which likely was caused by increased dilation of the tail vein. Gene expression analysis of whole organs showed upregulation of Wnt target genes involved in vascular contractility (Nos3), and extracellular matrix remodeling (Mmp2). Similarly, skin fibroblasts and lung EC isolated from Adtrp-/- mice showed increased expression of Wnt target genes (Lef-1, Cyclin D, Dkk2, c-Myc), which indicates constitutive activation of canonical Wnt signaling. In conclusion, we used genetic animal models and cell culture systems to show for the first time that the novel protein ADTRP plays major roles in vascular development and function. Lack of, or low levels of ADTRP associate with activation of coagulation and vascular development defects, which may be due, at least in part, to intrinsic high levels of ectopic canonical Wnt signaling. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (8) ◽  
pp. 531-537 ◽  
Author(s):  
R. Xiao ◽  
Huan L. Yu ◽  
Hai F. Zhao ◽  
J. Liang ◽  
Jin F. Feng ◽  
...  

2019 ◽  
Vol 241 (3) ◽  
pp. 249-263 ◽  
Author(s):  
Aijaz A John ◽  
Ravi Prakash ◽  
Divya Singh

miRNAs have appeared as critical controllers of gene expression at post-transcriptional level either by degrading RNA transcripts or repressing translation. It is evident from the ever-growing scientific literature that miRNAs play a significant role in osteoblast commitment and differentiation. Here, we report that overexpression of miR-487b-3p leads to inhibition of osteoblastic differentiation. Using in silico approaches, Nrarp was found to be the direct target of miR-487b-3p, which was further validated by luciferase 3′ UTR reporter assay. Nrarp inhibits Notch-1 signaling and promotes Wnt signaling by stabilization of LEF-1. Role of miR-487b-3p in regulating canonical Wnt and Notch signaling was determined by western blotting. Protein levels of Nrarp, RUNX-2, Lef1 and β catenin were reduced in osteoblasts cells transfected with miR-487b-3p, whereas protein levels of Notch1, Hes1 and P-β catenin were upregulated when osteoblast cells were transfected with miR-487b-3p. These outcomes were reversed after treating cells with anti-miR-487b-3p. Further silencing of miR-487b-3p in neonatal Balb/c mice attenuated all the inhibitory actions of miR-487b-3p on osteoblast differentiation. Importantly, in vivo action of anti-miR-487b-3p to ovariectomized osteopenic BALB/c mice steered to significant enhancement in trabecular bone microarchitecture. Furthermore, the bio-mechanical properties of isolated femurs were enhanced in anti-miR-487b-3p-treated mice. Overall, miR-487b-3p negatively regulates osteogenesis by suppressing Nrarp expression, which in turn, suppresses Runx-2 and Wnt signaling, both of which play a pivotal action in osteoblast differentiation.


genesis ◽  
2021 ◽  
Author(s):  
Alexandra J. Palmer ◽  
Dawn Savery ◽  
Valentina Massa ◽  
Andrew J. Copp ◽  
Nicholas D. E. Greene

2007 ◽  
Vol 306 (1) ◽  
pp. 437
Author(s):  
Yasuyuki S. Kida ◽  
Takayuki Sato ◽  
Asami Suto ◽  
Kouta Y. Miyasaka ◽  
Mari Minami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document