Timing of the phases of the cell cycle with tritiated thymidine and Feulgen cytophotometry during the period of synchronous division in Lymnaea

Development ◽  
1971 ◽  
Vol 26 (3) ◽  
pp. 351-366
Author(s):  
J. A. M. van den Biggelaar

The duration of the phases of the cell cycle during the 1-, the 2- and the 4-cell stage of the Lymnaea egg were determined with [3H]thymidine and with Feulgen cytophotometry. The M, S and G2 phases occupy 48, 27 and 25% of the first three cell cycles. A G1 phase cannot be observed. Only from the 4-cell stage was [3H]thymidine readily incorporated into DNA. The theory that an increase in respiration during the S phase of the 4-cell stage is connected with the energy requirements of DNA synthesis is discussed.

1984 ◽  
Vol 4 (9) ◽  
pp. 1807-1814
Author(s):  
J Campisi ◽  
A B Pardee

The control of eucaryotic cell proliferation is governed largely by a series of regulatory events which occur in the G1 phase of the cell cycle. When stimulated to proliferate, quiescent (G0) 3T3 fibroblasts require transcription, rapid translation, and three growth factors for the growth state transition. We examined exponentially growing 3T3 cells to relate the requirements for G1 transit to those necessary for the transition from the G0 to the S phase. Cycling cells in the G1 phase required transcription, rapid translation, and a single growth factor (insulin-like growth factor [IGF] I) to initiate DNA synthesis. IGF I acted post-transcriptionally at a late G1 step. All cells in the G1 phase entered the S phase on schedule if either insulin (hyperphysiological concentration) or IGF I (subnanomolar concentration) was provided as the sole growth factor. In medium lacking all growth factors, only cells within 2 to 3 h of the S phase were able to initiate DNA synthesis. Similarly, cells within 2 to 3 h of the S phase were less dependent on transcription and translation for entry into the S phase. Cells responded very differently to inhibited translation than to growth factor deprivation. Cells in the early and mid-G1 phases did not progress toward the S phase during transcriptional or translational inhibition, and during translational inhibition they actually regressed from the S phase. In the absence of growth factors, however, these cells continued progressing toward the S phase, but still required IGF at a terminal step before initiating DNA synthesis. We conclude that a suboptimal condition causes cells to either progress or regress in the cell cycle rather than freezing them at their initial position. By using synchronized cultures, we also show that in contrast to earlier events, this final, IGF-dependent step did not require new transcription. This result is in contrast to findings that other growth factors induce new transcription. We examined the requirements for G1 transit by using a chemically transformed 3T3 cell line (BPA31 cells) which has lost some but not all ability to regulate its growth. Early- and mid-G1-phase BPA31 cells required transcription and translation to initiate DNA synthesis, although they did not regress from the S phase during translational inhibition. However, these cells did not need IGF for entry into the S phase.


1970 ◽  
Vol 7 (2) ◽  
pp. 523-530
Author(s):  
C. J. BOSTOCK

The effect of different concentrations of 2-phenyl ethanol (PE) on growth and DNA synthesis of Schizosaccharomyces pombe is described. o.3% PE inhibits the entry of cells into S phase, but allows a doubling in the number of cells in the culture. The effect of o.2% PE on random and synchronous cultures of S. pombe shows that, in the continued presence of the inhibitor, the S phase is moved to a different point in the cell cycle. Cells continue to grow in the presence of o.2% PE with a G1 phase occupying a significant portion of the cell cycle. This differs from normal growth when the G1 phase is absent.


1975 ◽  
Vol 18 (3) ◽  
pp. 455-490
Author(s):  
R.T. Johnson ◽  
A.M. Mullinger

Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.


1993 ◽  
Vol 4 (7) ◽  
pp. 705-713 ◽  
Author(s):  
A M Thorburn ◽  
P A Walton ◽  
J R Feramisco

In studying the mechanism through which the myogenic determination protein MyoD prevents entry into the S phase of the cell cycle, we have found a relationship between MyoD and the retinoblastoma (Rb) tumor suppressor protein. By direct needle microinjection of purified recombinant MyoD protein into quiescent fibroblasts, which were then induced to proliferate by serum, we found that MyoD arrested progression of the cell cycle, in agreement with studies utilizing expression constructs for MyoD. By studying temporal changes in cells injected with MyoD protein, it was found that MyoD did not prevent serum induced expression of the protooncogene c-Fos, an event that occurs in the G0 to G1 transition of the cycle. Injection of the MyoD protein as late as 8 h after the addition of serum still caused an inhibition in DNA synthesis, suggesting that MyoD inhibits the G1 to S transition as opposed to the G0 to G1 transition. MyoD injection did not prevent the expression of cyclin A. However MyoD injection did result in a block in the increase in Rb extractibility normally seen in late G1 phase cells. As this phenomenon is associated with the hyperphosphorylation of Rb at this point in the cell cycle and is correlated with progression into S phase, this provides further evidence that MyoD blocks the cycle late in G1.


1974 ◽  
Vol 60 (1) ◽  
pp. 249-257 ◽  
Author(s):  
Jeffrey E. Froehlich ◽  
Martin Rachmeler

Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.


1966 ◽  
Vol 31 (1) ◽  
pp. 1-9 ◽  
Author(s):  
David M. Prescott

The syntheses of histone, total protein, and DNA during the cell cycle were measured in the macronucleus of Euplotes eurystomus by assaying the incorporation of tritiated amino acids and tritiated thymidine in groups of 800 to 1000 synchronized cells. The synthesis of DNA begins at 30% completion of the cell cycle, proceeds at a constant rate, and ends very shortly before the beginning of macronuclear division. Histone labeling is absent during G1, begins in phase with DNA synthesis, continues at an unchanging rate during the S phase, and ends with the completion of DNA synthesis. The results support the view that the syntheses of histone and DNA are closely coupled events. Label in total protein accumulates at a constant rate during G1 and appears to shift to a slightly higher rate when histone synthesis begins. At division, radioactive DNA, histone, and total protein are distributed equally between the daughter macronuclei without loss of radioactivity. Radioautographic analysis showed that protein labeling occurs throughout the macronucleus during the entire life cycle. There was no clear difference in the degree of protein labeling between replicated and unreplicated regions of the macronucleus. The distribution of label suggests that most of macronuclear protein labeling during the cell cycle is concerned with the events of transcription rather than replication.


1984 ◽  
Vol 4 (9) ◽  
pp. 1807-1814 ◽  
Author(s):  
J Campisi ◽  
A B Pardee

The control of eucaryotic cell proliferation is governed largely by a series of regulatory events which occur in the G1 phase of the cell cycle. When stimulated to proliferate, quiescent (G0) 3T3 fibroblasts require transcription, rapid translation, and three growth factors for the growth state transition. We examined exponentially growing 3T3 cells to relate the requirements for G1 transit to those necessary for the transition from the G0 to the S phase. Cycling cells in the G1 phase required transcription, rapid translation, and a single growth factor (insulin-like growth factor [IGF] I) to initiate DNA synthesis. IGF I acted post-transcriptionally at a late G1 step. All cells in the G1 phase entered the S phase on schedule if either insulin (hyperphysiological concentration) or IGF I (subnanomolar concentration) was provided as the sole growth factor. In medium lacking all growth factors, only cells within 2 to 3 h of the S phase were able to initiate DNA synthesis. Similarly, cells within 2 to 3 h of the S phase were less dependent on transcription and translation for entry into the S phase. Cells responded very differently to inhibited translation than to growth factor deprivation. Cells in the early and mid-G1 phases did not progress toward the S phase during transcriptional or translational inhibition, and during translational inhibition they actually regressed from the S phase. In the absence of growth factors, however, these cells continued progressing toward the S phase, but still required IGF at a terminal step before initiating DNA synthesis. We conclude that a suboptimal condition causes cells to either progress or regress in the cell cycle rather than freezing them at their initial position. By using synchronized cultures, we also show that in contrast to earlier events, this final, IGF-dependent step did not require new transcription. This result is in contrast to findings that other growth factors induce new transcription. We examined the requirements for G1 transit by using a chemically transformed 3T3 cell line (BPA31 cells) which has lost some but not all ability to regulate its growth. Early- and mid-G1-phase BPA31 cells required transcription and translation to initiate DNA synthesis, although they did not regress from the S phase during translational inhibition. However, these cells did not need IGF for entry into the S phase.


1986 ◽  
Vol 239 (3) ◽  
pp. 745-750 ◽  
Author(s):  
R Panet ◽  
D Snyder ◽  
H Atlan

In this study we tested the hypothesis that stimulation of univalent-cation fluxes which follow the addition of growth factors are required for cell transition through the G1-phase of the cell cycle. The effect of two drugs, amiloride and bumetanide, were tested on exit of BALB/c 3T3 cells from G0/G1-phase and entry into S-phase (DNA synthesis). Amiloride, an inhibitor of the Na+/H+ antiport, only partially inhibited DNA synthesis induced by serum. Bumetanide, an inhibitor of the Na+/K+ co-transport, only slightly suppressed DNA synthesis by itself, but when added together with amiloride completely blocked cell transition through G1 and entry into S-phase. Similar inhibitory effects of the two drugs were found on the induction of ornithine decarboxylase (ODC) (a marker of mid-G1-phase) in synchronized cells stimulated by either partially purified fibroblast growth factor (FGF) or serum. To test this hypothesis further, cells arrested in G0/G1 were stimulated by serum, insulin or FGF. All induced similar elevations of cellular K+ content during the early G1-phase of the cell cycle. However, serum and FGF, but not insulin, released the cells from the G0/G1 arrest, as measured by ODC enzyme induction. This result implies that the increase in cellular K+ content may be necessary but not sufficient for induction of early events during the G1-phase. The synergistic inhibitory effects of amiloride and bumetanide on the two activities stimulated by serum growth factors, namely ODC induction (mid-G1) and thymidine incorporation into DNA (S-phase), suggested that the amiloride-sensitive Na+/H+ antiport system together with the bumetanide-sensitive Na+/K+ transporter play a role in the mitogenic signal.


Development ◽  
1971 ◽  
Vol 26 (3) ◽  
pp. 367-391
Author(s):  
J. A. M. van den Biggelaar

The duration of the phases of the cell cycle (M-G1–S-G2) has been determined from the 8-up to the 49-cell stage in eggs of Lymnaea, using autoradiography and cytophotometry of Feulgen-stained nuclei. Division asynchrony of corresponding cells in different quadrants is primarily caused by unequal lengthening of the G2 phases. In general it appeared that in the vegetative cells lengthening of the cell cycles is chiefly due to an extension of the G2 phases, whereas in the cells of the animal half the duration of both the S and the G2 phases are extended. DNA synthesis is not blocked in cells which stop dividing and start to differentiate. A conspicuous lengthening of the cell cycles is observed in the 16- and 24-cell embryo; this is accompanied with the reappearance of distinct nucleoli. Supporting evidence has been obtained for the assumption that bilateral symmetry at the animal pole of the embryo is induced by cells from the vegetative hemisphere, presumably by the macromere 3D, during the 24-cell stage.


1999 ◽  
Vol 340 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Parisa DANAIE ◽  
Michael ALTMANN ◽  
Michael N. HALL ◽  
Hans TRACHSEL ◽  
Stephen B. HELLIWELL

The essential cap-binding protein (eIF4E) of Saccharomycescerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G1 phase of the cell cycle at 37 °C. We show that other cdc33 mutants also arrest in G1. One of the first events required for G1-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5ʹ-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5ʹ-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5ʹ-CLN3 message in a cdc33-1 mutant previously arrested in G1 also caused entry into a new cell cycle. We conclude that eIF4E activity in the G1-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.


Sign in / Sign up

Export Citation Format

Share Document