Relationship between the amount of the ‘germinal plasm’ and the number of primordial germ cells in Xenopus laevis

Development ◽  
1974 ◽  
Vol 31 (1) ◽  
pp. 89-98
Author(s):  
Kazuyuki Tanabe ◽  
Minoru Kotani

Tadpoles of Xenopus laevis completely lacking primordial germ cells were obtained by irradiating the vegetal hemisphere of early 2-cell eggs with u.v. (wavelength, 253·7 nm; dose, ca. 6000 ergs/mm2). An increasing number of primordial germ cells were observed as the stage at irradiation advanced from early 2-cell to early 4-cell stages. Furthermore, early 2-cell eggs irradiated with doses ranging from 750 to 6000 ergs/mm2 grew into tadpoles carrying a decreasing number of primordial germ cells in accord with the increase of the dose. On the other hand, tadpoles developed from eggs irradiated immediately after being centrifuged at 150 g for 1 min at early 2-cell stage to displace the ‘germinal plasm’ deeper into the cytoplasm, carried a considerable number of primordial germ cells. These facts were interpreted to suggest the presence of u.v.-sensitive germ cell determinant in the ‘germinal plasm’. It was revealed by varying the area of irradiation that the number of primordial germ cells decreased in direct proportion to the increase of the area irradiated. It was concluded that the amount of the u.v.-sensitive material(s) contained in the ‘germinal plasm’ determined the number of primordial germ cells in tadpoles.

Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 33-46
Author(s):  
Brigitta Züst ◽  
K. E. Dixon

Approximately 20–25 primordial germ cells leave the endoderm between stages 38–41 and localize in the dorsal root of the mesentery by stage 43/44. At this time all the cells contain large quantities of yolk which is gradually resorbed. The cells begin dividing between stages 48–52. The number and size of the germ cells were measured in tadpoles between stages 48–54 of development. The results indicate that in females the germ cells divide more often than in males. In both sexes the mitoses are grossly unequal, leading to the formation of a new generation of germ cells which are considerably smaller (one-tenth to one-fifth) than the size of the primordial germ cells at stage 48. The germ cells in male tadpoles at stage 54 are larger than in female tadpoles at the same stage. In tadpoles which developed from eggs irradiated in the vegetal hemisphere with u.v. light at the 2- to 4-cell-stage, primordial germ cells migrate into the genital ridges much later (stage 46–48) than in unirradiated embryos. They also differ morphologically from germ cells in control animals at this stage in that they are approximately one-tenth the size, lacking yolk in the cytoplasm and have a more highly lobed nucleus. Comparison of the results in unirradiated and irradiated animals suggests that the germ cell lineage is composed of a series of ordered, predictable events, and serious disruption of one of the events deranges later events.


Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 1-17
Author(s):  
Michiko Kamimura ◽  
Minoru Kotani ◽  
Kenzo Yamagata

Presumptive primordial germ cells (pPGCs) were examined during migration from their deep endodermal position to the endodermal crest in Xenopus laevis, using light and electron microscopy with Epon sections, and several morphological characteristics of pPGCs, associated with their migration, were revealed. pPGCs displayed polymorphism, with smooth contours. The intercellular space around the pPGCs was large and variable in width and cytoplasmic processes from pPGCs were occasionally observed in it. It was shown quantitatively that pPGCs at the migratory stage had a tendency to move with the leading end, towards which the nucleus was localized, dragging the germinal plasm behind. These polarized pPGCs were frequently associated with large intercellular spaces, both at their leading and trailing ends. Cytoplasmic processes of polarizing pPGCs found in the large intercellular space at the leading end were conspicuous. Ultrastructurally, the nuclei of pPGCs were euchromatic, and the nucleolus was prominent. The germinal plasm at the light microscope level corresponded to the cytoplasmic area near the nucleus where a large number of mitochondria with well-developed cristae and most of the other organelles were aggregated. Centrioles and centriole-associated microtubules observed in the aggregate were thought to be important structures responsible for the cell polarization mentioned above. It was demonstrated quantitatively that the size of mitochondria in pPGCs was larger on average than that of mitochondria in neighbouring somatic endodermal cells. Numerous irregularly shaped small yolk platelets characterized pPGCs. These ultrastructural features suggested that pPGCs were in an activated metabolic state. It was concluded that the migration of pPGCs was attributable to active movement with high cell metabolism, causing the formation of cell processes and intracellular polarization.


Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 83-93
Author(s):  
J. H. Cleine

The genital ridges of Xenopus laevis tadpoles reared from eggs kept in an inverted position contain less than 40 % of the number of primordial germ cells (PGCs) of controls (Cleine & Dixon, 1985). It has been suggested that this reduction is caused by the germ cells' ectopic position in the anterior endoderm of larvae from inverted eggs, from where they may be unable to migrate into the genital ridges (Cleine & Dixon, 1985). This hypothesis is tested here by interchanging anterior and posterior endodermal grafts between pairs of inverted embryos at the early tailbud stage. Replacement of anterior by posterior endoderm has no effect but replacement of posterior by anterior endoderm increases the number of PGCs in the genital ridges and significantly reduces the proportion of sterile embryos. In a control series, in which the same type of grafting was done with normal embryos, replacement of posterior by anterior endoderm reduced the number of germ cells to almost zero, but replacement of anterior by posterior endoderm nearly doubled it. These findings are explained in terms of the distribution of the germ cells in the endoderm at the time of grafting. The results firstly show that the position of the germ cells is crucial to successful migration and secondly they support the notion that germ plasm has a determinative role during early germ cell differentiation.


Development ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 251-265
Author(s):  
Yasuko Akita ◽  
Masami Wakahara

Correlation of the number of primordial germ cells (PGCs) at stage 47 with the amount of germ plasm at the 8-cell stage and with the number of the germ-plasm-containing cells (GPCCs) was analysed using two different laboratory-raised colonies of Xenopus laevis, HD and J groups. The average number of PGCs in J group tadpoles was significantly larger than that in HD group tadpoles. The amount of germ plasm in J group embryos was also demonstrated to be larger than in HD group embryos. The amount of germ plasm was related positively to the number of GPCCs at the 8-cell stage and to the resulting number of PGCs; embryos which contained larger amounts of germ plasm developed larger numbers of PGCs at stage 47. The average number of PGCs in experimentally induced triploid tadpoles was exactly twothirds of that in normal diploid tadpoles. Furthermore, in somatic cells (e.g. epidermis, muscle, pancreas), the number of cells in the triploid was also two-thirds of that in diploid tadpoles. These findings suggest that the number of PGCs is regulated by at least two different mechanisms: first, the number of PGCs is primarily specified by the intrinsic amount of germ plasm in the fertilized egg. Second, it is regulated by an unknown mechanism which controls the total number of cells of whole embryos, such as the nucleocytoplasmic ratio.


Development ◽  
1965 ◽  
Vol 13 (1) ◽  
pp. 51-61
Author(s):  
A. W. Blackler

A Technique for the transfer of primordial germ cells between neurulae of the South African Clawed Toad Xenopus laevis has been described by Blackler & Fischberg (1961). This method was originally developed with the object in mind of eventually making a genetic analysis of abnormal embryos resulting from the transplantation of somatic nuclei. Such analysis involves two schemes which require the transfer of embryonic gonocytes from the defective transplant embryo to a normal recipient. Moreover, one of these two schemes requires that transferred germ cells be reversed in their sexual differentiation in the developing gonad of the host (see Fischberg, 1961; Fischberg & Blackler, 1963a, b). Since it has been known for some time, from experiments involving parabiosis, transplantation of the gonadal rudiment and hormone treatment (e.g. Burns, 1925, 1930; Witschi, 1937; Humphrey, 1929, 1933, 1948, 1957; Gallien, 1953, 1956), that the manifestation of the sex genotype of a primordial germ cell can be physiologically reversed by the hormonal characteristics of the gonad, there seemed no obstacle to obtaining sex-reversal of the transferred gonocytes in Xenopus.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3157-3165 ◽  
Author(s):  
C. Yoon ◽  
K. Kawakami ◽  
N. Hopkins

Identification and manipulation of the germ line are important to the study of model organisms. Although zebrafish has recently emerged as a model for vertebrate development, the primordial germ cells (PGCs) in this organism have not been previously described. To identify a molecular marker for the zebrafish PGCs, we cloned the zebrafish homologue of the Drosophila vasa gene, which, in the fly, encodes a germ-cell-specific protein. Northern blotting revealed that zebrafish vasa homologue (vas) transcript is present in embryos just after fertilization, and hence it is probably maternally supplied. Using whole-mount in situ hybridization, we investigated the expression pattern of vas RNA in zebrafish embryos from the 1-cell stage to 10 days of development. Here we present evidence that vas RNA is a germ-cell-specific marker, allowing a description of the zebrafish PGCs for the first time. Furthermore, vas transcript was detected in a novel pattern, localized to the cleavage planes in 2- and 4-cell-stage embryos. During subsequent cleavages, the RNA is segregated as subcellular clumps to a small number of cells that may be the future germ cells. These results suggest new ways in which one might develop techniques for the genetic manipulation of zebrafish. Furthermore, they provide the basis for further studies on this novel RNA localization pattern and on germ-line development in general.


Development ◽  
1975 ◽  
Vol 34 (3) ◽  
pp. 687-694
Author(s):  
Ken-Ichi Ijiri ◽  
Nobuo Egami

Data on the spatio-temporal pattern of germ cell proliferation in Xenopus laevis tadpoles were obtained, tracing the germ cells from the cloacal position forward. This spatial pattern in germ cell distribution and its change during normal development clearly coincided with histological observations of germ gland development. By application of regression lines to the analysis of this complex pattern, an interesting conclusion about the mitotic activity of germ cells was suggested. While the mitotic activity of germ cells before sexual differentiation shows a regional difference along the germ-cell-containing ridge (GCCR), the doubling time of sexually differentiated gonia seems to show a uniform value over the whole GCCR


Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


Sign in / Sign up

Export Citation Format

Share Document