Cell interactions and endoderm differentiation in cultured mouse embryos

Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 379-394
Author(s):  
Brigid L. M. Hogan ◽  
Rita Tilly

Morphological and biochemical evidence is presented that the visceral extraembryonic endoderm of the 6·5-day mouse embryo will differentiate into parietal endoderm when cultured in contact with extraembryonic ectoderm undergoing transition into trophoblast giant cells. Egg cylinders from 6·5-day embryos were dissected into embryonic and extraembryonic halves and cultured in suspension in vitro for up to 7 days. After 4 days, the endoderm cells of the extraembryonic fragments morphologically resemble parietal endoderm, are associated with a thick basement membrane and synthesize large amounts of the matrix proteins laminin and Type IV procollagen. A similar transition in phenotype is not seen in the endoderm of embryonic fragments, nor in visceral extraembryonic endoderm cells cultured in isolation. In another series of experiments, complete egg cylinders were dissected free of visceral endoderm ovei lying the extraembryonic ectoderm and then cultured in vitro. The visceral endoderm cells which recolonize the surface of the extraembryonic ectoderm develop a parietal endoderm phenotype and lay down a thick basement membrane. These results suggest that the differentiation of the extraembryonic endoderm of the early mouse embryo into visceral and parietal phenotypes can be influenced by local cell—cell or cell—substrate interactions, and is not determined solely by cell lineage.

Development ◽  
1982 ◽  
Vol 68 (1) ◽  
pp. 175-198
Author(s):  
R. L. Gardner

The technique of injecting genetically labelled cells into blastocysts was used in an attempt to determine whether the parietal and visceral endoderm originate from the same or different cell populations in the early embryo. When the developmental potential of 5th day primitive ectoderm and primitive endoderm cells was compared thus, only the latter were found to colonize the extraembryonic endoderm. Furthermore, single primitive endoderm cells yielded unequivocal colonization of both the parietal and the visceral endoderm in a proportion of chimaeras. However, in the majority of primitive endodermal chimaeras, donor cells were detected in the parietal endoderm only, cases of exclusively visceral colonization being rare. Visceral endoderm cells from 6th and 7th day post-implantation embryos also exhibited a striking tendency to contribute exclusively to the parietal endoderm following blastocyst injection. The above findings lend no support to a recent proposal that parietal and visceral endoderm are derived from different populations of inner cell mass cells. Rather, they suggest that the two extraembryonic endoderm layers originate from a common pool of primitive endoderm cells whose direction of differentiation depends on their interactions with non-endodermal cells.


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 107-121
Author(s):  
Brigid Hogan ◽  
Rita Tilly

This paper describes the development in culture of inner cell masses isolated immunosurgically from C3H/He mouse blastocysts immediately after collection between 3·5 and 4·0 days p.c. By 24–48 h most of the inner cell masses isolated from half-expanded blastocysts, and about 50% of those from expanded blastocysts, regenerate an outer layer of trophectoderm- like cells and so resemble mini-blastocysts. With further in vitro culture these structures attach to the substratum and give rise to trophoblast-like giant cells, together with clusters of parietal endoderm cells or inner cell masses surrounded by visceral endoderm. Many of the inner cell masses from the remaining expanded blastocysts develop into floating structures with an outer layer of endoderm cells, and by 7 days consist of a large fluid filled cyst surrounding a collapsed vesicle of epithelial cells. Mesodermal cells line the cysts and form numerous blood islands. When mechanically disrupted, and grown as attached sheets of cells, these cystic structures give rise to patches of trophoblast-like giant cells similar to those described in the previous paper. These results suggest that the inner cell mass of normal mouse blastocysts contains cells which are capable of giving rise to trophoblast in culture.


2021 ◽  
Author(s):  
Jiangwei Lin

Mouse extraembryonic endoderm stem (XEN) cell lines can be derived from preimplantation embryos (pre-XEN) and postimplantation embryos (post-XEN). XEN cells share a gene expression profile and cell lineage potential with primitive endoderm (PrE) blastocysts. However, the cellular origin of XEN cells in embryos remains unclear. Here, we report that post-XEN cell lines are derived both from the extraembryonic endoderm and epiblasts of postimplantation embryos and that pre-XEN cell lines are derived both from PrE and epiblasts of blastocysts. Our strategy consisted of deriving post-XEN cells from clumps of epiblasts, parietal endoderm (PE) and visceral endoderm (VE) and deriving pre-XEN cell lines from single PrE and single epiblasts of blastocysts. Thus, XEN cell lines in the mouse embryo originate not only from PrE and PrE-derived lineages but also from epiblast and epiblast-derived lineages of blastocysts and postimplantation embryos.


Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 135-146
Author(s):  
M. Dziadek

The visceral endoderm of mouse egg cylinders on the 7th and 8th days of gestation is divided into the visceral embryonic (VE) endoderm cell population which synthesizes alphafetoprotein (AFP), and the visceral extra-embryonic (VEX) endoderm population which does not synthesize AFP. Embryonic (E) and extra-embryonic (EX) ectoderm and visceral endoderm tissues were enzymically separated, reassociated in different combinations, and cultured in vitro for 48 h. The immunoperoxidase reaction on sections of cultured tissues showed that both VE and VEX endoderm cells synthesize high levels of AFP when cultured in isolation or in association with E ectoderm, but do not synthesize AFP when in close association with EX ectoderm. Both 7th and 8th day VEX endoderm cells synthesize detectable levels of AFP 12 h after isolation, and contain high levels by 24 h. It is concluded that both VE and VEX endoderm cells have the ability to synthesize AFP, but modulation of expression occurs through an inhibitory influence of the EX ectoderm.


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 93-105
Author(s):  
Brigid Hogan ◽  
Rita Tilly

This paper describes the in vitro development of inner cell masses isolated immunosurgically from mouse blastocysts which had been collected on 3·5 days p.c. and then incubated for 24 h. The inner cell masses continue to grow in culture and develop through a series of stages with increasing complexity of internal organization. By day 1 all of the cultured ICMs have an outer layer of endoderm, and by day 3 some of them have two distinct kinds of inside cells; a columnar epithelial layer and a thin hemisphere of elongated cells. Later, mesodermal cells appear to delaminate from a limited region of the columnar layer, close to where it forms a junction with the thinner cells. By day 5, about 25% of the cultured ICMs have a striking resemblance to normal 7·5-day p.c. C3H embryos, with embryonic ectoderm, extra-embryonic ectoderm and chorion, embryonic and extra-embryonic mesoderm, and visceral endoderm. When mechanically disrupted and grown as attached clumps of cells in a tissue dish, these embryo-like structures give rise to trophoblast-like giant cells. These results suggest that the inner cell mass of 4·5-day p.c. blastocysts contains cells which can give rise to trophoblast derivates in culture.


1998 ◽  
Vol 10 (8) ◽  
pp. 517 ◽  
Author(s):  
Jennifer Nichols ◽  
Austin Smith ◽  
Mia Buehr

In this study we have compared the in vitro differentiation potential of epiblast tissue from mouse and rat embryos. Epiblasts were isolated from egg cylinder stage embryos by microdissection and placed in culture. Rat cultures were distinguished by the copious production of parietal endoderm cells. Mouse epiblasts, in contrast, did not produce parietal endoderm. This difference in capacity to regenerate extraembryonic endoderm marks a surprising distinction in development of the pluripotential lineage between these two closely related rodents.


1990 ◽  
Vol 191 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Kerry J. Fowler ◽  
Katherine Mitrangas ◽  
Marie Dziadek

2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Guiyu Li ◽  
Yue Peng ◽  
Tiejian Zhao ◽  
Jiyong Lin ◽  
Xuelin Duan ◽  
...  

Critical roles for liver sinusoidal endothelial cells (LSECs) in liver fibrosis have been demonstrated, while little is known regarding the underlying molecular mechanisms of drugs delivered to the LSECs. Our previous study revealed that plumbagin plays an antifibrotic role in liver fibrosis. In this study, we investigated whether plumbagin alleviates capillarization of hepatic sinusoids by downregulating endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), laminin (LN), and type IV collagen on leptin-stimulated LSECs. We found that normal LSECs had mostly open fenestrae and no organized basement membrane. Leptin-stimulated LSECs showed the formation of a continuous basement membrane with few open fenestrae, which were the features of capillarization. Expression of ET-1, VEGF, LN, and type IV collagen was enhanced in leptin-stimulated LSECs. Plumbagin was used to treat leptin-stimulated LSECs. The sizes and numbers of open fenestrae were markedly decreased, and no basement membrane production was found after plumbagin administration. Plumbagin decreased the levels of ET-1, VEGF, LN, and type IV collagen in leptin-stimulated LSECs. Plumbagin promoted downregulation of ET-1, VEGF, LN, and type IV collagen mRNA. Altogether, our data reveal that plumbagin reverses capillarization of hepatic sinusoids by downregulation of ET-1, VEGF, LN, and type IV collagen.


2022 ◽  
Author(s):  
Xudong Dong ◽  
Ailing Ding ◽  
Jiangwei Lin

Extraembryonic endoderm stem (XEN) cell lines can be derived and maintained in vitro and reflect the primitive endoderm cell lineage. SOX17 is thought to be required for the derivation and maintenance of mouse XEN cell lines. Here we have re-evaluated this requirement for SOX17. We derived multiple SOX17-deficient XEN cell lines from preimplantation embryos of a SOX17-Cre knockout strain and chemically converted multiple SOX17-deficient embryonic stem cell lines into XEN cell lines by transient culturing with retinoic acid and Activin A. We confirmed the XEN profile of SOX17-deficient cell lines by immunofluorescence with various markers, by NanoString gene expression analyses, and by their contribution to the extraembryonic endoderm of chimeric embryos produced by injecting these cells into blastocysts. Thus, SOX17 is not required for the derivation and maintenance of XEN cell lines.


Sign in / Sign up

Export Citation Format

Share Document