scholarly journals Characterization of a reduced-eye mutant of the grasshopper, Melanoplus sanguinipes

Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 189-211
Author(s):  
D. J. Emery ◽  
K. A. Bell ◽  
W. Chapco ◽  
J. D. Steeves

A reduced-eye (re) mutant grasshopper of Melanoplus sanguinipes has been characterized by small flat compound eyes lacking facets, no lateral ocelli and only a remnant of the median ocellus. The re grasshoppers walk, jump, fly and feed in a normal manner, but do not respond to visual and auditory stimuli, suggesting they may be blind and deaf. Extracellular recordings from the ventral nerve cord of re mutants verified the lack of neural activity in response to visual and auditory inputs, yet the mutants detected mechanical and tactile stimuli. Electroretinograms implied that a visual deficit may be within the photoreceptors of the compound eye. Histological examination of the compound eyes and ocelli indicated that the cells of the mutant compound eye incompletely differentiate. The optic lamina underlying the retina is missing, as is the outer optic chiasma. The medulla and lobula of the mutant optic lobe are present, however, the neuropil of the medulla lacks the characteristic axonal projection patterns of wild-type grasshoppers. The re grasshopper also lacks all ocellar nerves. Ocellar nerves are normally formed from processes of second order ocellar neurons (SONs), suggesting that if the mutant SONs are present within the protocerebrum, their morphology is drastically altered. Comparison of embryos and juvenile nymphs supports the suggestion that the alterations in the re visual system are the result of abnormal differentiation during development. Even though there is clear evidence of morphological alterations in second and third order optic lobe interneurons, one higher order visual interneuron of the midbrain, the descending contralateral movement detector (DCMD), has the same morphology as the DCMD in a wildtype brain. In this instance, the complete deprivation of the primary sensory input does not appear to alter cellular development.

1995 ◽  
Vol 74 (6) ◽  
pp. 2739-2743 ◽  
Author(s):  
J. P. Bacon ◽  
K. S. Thompson ◽  
M. Stern

1. Habituation is the declining responsiveness of a neural circuit (or behavior) to repetitive stimulation. Dishabituation (or arousal) can be brought about by the sudden presentation of an additional, novel stimulus. A clear example of arousal in the locust is provided by the visual system: the habituated response of the descending contralateral movement detector (DCMD) interneuron to repetitive visual stimuli can be dishabituated by a variety of other visual and tactile stimuli. 2. Application of octopamine to the locust brain and optic lobes dishabituates the DCMD in a manner similar to the effect of visual and tactile stimulation. 3. The locust CNS contains two pairs of octopamine-immunoreactive cells, the protocerebral medulla 4 (PM4) neurons, that could potentially mediate this dishabituation effect; PM4 neurons arborize in the optic lobe, they contain octopamine, and they respond to the same visual and tactile stimuli that dishabituate the DCMD. 4. To investigate whether PM4 activity dishabituates the DCMD, we recorded intracellularly from one of the PM4 neurons while recording extracellularly from the DCMD. When the PM4 neuron is injected with hyperpolarizing current to render it completely inactive, the DCMD exhibits its characteristic habituation to a moving visual stimulus. However, depolarizing the PM4 neuron, to produce action potentials at approximately 20 Hz, significantly increases the number of DCMD action potentials per stimulus. 5. The PM4 neurons may therefore play an important role in dishabituating the DCMD to novel stimuli. This effect is presumably mediated by PM4 neurons releasing endogenous octopamine within the optic lobe.


2012 ◽  
Vol 108 (4) ◽  
pp. 1052-1068 ◽  
Author(s):  
Glyn A. McMillan ◽  
John R. Gray

Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the approach of paired objects and approaches at different time intervals (Guest BB, Gray JR. J Neurophysiol 95: 1428–1441, 2006) suggest that this pathway may also be affected by more complicated movements in the locust's visual environment. To test this possibility we presented stationary locusts with disks traveling along combinations of colliding (looming), noncolliding (translatory), and near-miss trajectories. Distinctly different responses to different trajectories and trajectory changes demonstrate that DCMD responds to complex aspects of local visual motion. DCMD peak firing rates associated with the time of collision remained relatively invariant after a trajectory change from translation to looming. Translatory motion initiated in the frontal visual field generated a larger peak firing rate relative to object motion initiated in the posterior visual field, and the peak varied with simulated distance from the eye. Transition from translation to looming produced a transient decrease in the firing rate, whereas transition away from looming produced a transient increase. The change in firing rate at the time of transition was strongly correlated with unique expansion parameters described by the instantaneous angular acceleration of the leading edge and subtense angle of the disk. However, response time remained invariant. While these results may reflect low spatial resolution of the compound eye, they also suggest that this motion-sensitive pathway may be capable of monitoring dynamic expansion properties of objects that change the trajectory of motion.


1974 ◽  
Vol 60 (1) ◽  
pp. 1-12
Author(s):  
M. O'SHEA ◽  
C. H. F. ROWELL ◽  
J. L. D. WILLIAMS

1. The DCMD neurone is physiologically well-known and runs from the brain to the metathoracic ganglion. It responds to novel movement of small contrasting objects in the visual field and synapses on metathoracic motoneurones which mediate the jump of the locust. Its anatomy, here reported, has been visualized by intracellular cobalt staining. 2. The soma is 50 µm in diameter and lies on the upper posterior face of the protocerebrum, lateral to the midline. A neurite runs to a thickened integrating segment 20 µm. in diameter, which bears numerous dendrites; none of these extends to the optic lobe. An axon leaves the integrating segment, crosses the brain, thickens to about 17µm and descends the contralateral nerve cord. 3. The descending axon terminates in the metathoracic ganglion, where it has three major branches both ipsi- and contralateral. Its branching in the mesothoracic ganglion is similar, but extends only ipsilaterally; in the prothoracic ganglion there is reduced branching, and in the suboesophageal ganglion none at all. 4. The branching pattern in the metathorax is compatible with, and entirely explicable by, the known synaptic connexions with motoneurones. 5. The morphological description of the cell has made possible intracellular recording from axon, integrating segment and soma.


Development ◽  
1971 ◽  
Vol 26 (3) ◽  
pp. 523-542
Author(s):  
K. Straznicky ◽  
R. M. Gaze ◽  
M. J. Keating

The nature of the retinotectal projection from a compound (NN or TT) eye in Xenopus raises certain problems concerning the mode of formation of connexions between the eye and the tectum. Each half of the compound eye appears to spread its connexions across the entire extent of the (apparently normal) contralateral tectum. This could indicate a certain plasticity in the way in which optic fibres can connect with the tectum. Alternatively, it is conceivable that each (similar) half of the compound eye is only able to innervate its corresponding half-tectum; in which case the uninnervated half-tectum could remain undeveloped and the innervated half-tectum could overgrow to resemble a normal tectum. This mechanism would preserve the idea of a rigidly fixed cell-to-cell specificity between retina and tectum. In an attempt to distinguish between these two mechanisms (spreading or overgrown half-tectum) we have given each of a series of Xenopus embryos at stage 32 one compound eye (NN or TT). Then, shortly after metamorphosis, we uncrossed the optic chiasma and 6 months later recorded the retinotectal projections from each eye to the tecta. Thus by connecting up the normal eye to the suspect tectum, and the compound eye to the normal tectum, we used the normal side in each case to provide an indication of the degree of abnormality with which the other side was connected. The results showed that a compound eye (NN or TT), connected to a normal tectum, gave a typical reduplicated map across the entire tectum, whereas the normal eye, when connected to the tectum which was previously innervated by the compound eye, gave an approximately normal projection across the whole of that tectum. These results lead us to conclude that, in the Xenopus visual system, no strict cell-to-cell type specificity exists; rather, what is preserved throughout these experimental manoeuvres is the polarity and extent of the projection.


1980 ◽  
Vol 86 (1) ◽  
pp. 87-97
Author(s):  
PETER SIMMONS

Both of the descending contralateral movement detector (DCMD) neurones of Schistocerca americana gregaria, which respond to stimulation of the contralateral eye or to loud noises, mediate excitatory postsynaptic potentials in most ipsilateral flight motoneurones.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 259-276
Author(s):  
Charles Straznicky ◽  
David Tay

Right compound eyes were formed in Xenopus embryos at stages 32–33 by the fusion of two nasal (NN), two ventral (VV) or two temporal (TT) halves. Shortly after metamorphosis the optic nerve from the compound eye was sectioned and the left intact eye removed. The retinotectal projections from the compound eye to the contralateral and ipsilateral tecta were studied by [3H]proline autoradiography and electrophysiological mapping between 6 weeks and 5 months after the postmetamorphic surgery. The results showed that NN and VV eyes projected to the entire extent of both tecta. In contrast, optic fibre projection from TT eyes, although more extensive than the normal temporal hemiretinal projection, failed to cover the caudomedial portion of the tecta. The visuotectal projections in all three combinations corresponded to typical reduplicated maps to be expected from such compound eyes, where each of the hemiretinae projected across the contralateral and ipsilateral tecta in an overlapping fashion. The rapid expansion of the hemiretinal projections of the compound eyes in the ipsilateral tectum following the removal of the resident optic fibre projection suggests that tectal markers may be carried and deployed by the incoming optic fibres themselves.


2021 ◽  
Author(s):  
Montserrat Torres-Oliva ◽  
Elisa Buchberger ◽  
Alexandra D. Buffry ◽  
Maike Kittelmann ◽  
Lauren Sumner-Rooney ◽  
...  

The compound eyes of insects exhibit extensive variation in ommatidia number and size, which affects how they see and underlies adaptations in their vision to different environments and lifestyles. However, very little is known about the genetic and developmental bases underlying differences in compound eye size. We previously showed that the larger eyes of Drosophila mauritiana compared to D. simulans is caused by differences in ommatidia size rather than number. Furthermore, we identified an X-linked chromosomal region in D. mauritiana that results in larger eyes when introgressed into D. simulans. Here, we used a combination of fine-scale mapping and gene expression analysis to further investigate positional candidate genes on the X chromosome. We found that orthodenticle is expressed earlier in D. mauritiana than in D. simulans during ommatidial maturation in third instar larvae, and we further show that this gene is required for the correct organisation and size of ommatidia in D. melanogaster. Using ATAC-seq, we have identified several candidate eye enhancers of otd as well as potential direct targets of this transcription factor that are differentially expressed between D. mauritiana and D. simulans. Taken together, our results suggest that differential timing of otd expression contributes to natural variation in ommatidia size between D. mauritiana and D. simulans, which provides new insights into the mechanisms underlying the regulation and evolution of compound eye size in insects.


Development ◽  
1975 ◽  
Vol 33 (3) ◽  
pp. 775-787
Author(s):  
Joan D. Feldman ◽  
R. M. Gaze

Double-nasal and double-temporal compound eyes were constructed in Xenopus embryos at stages 32 and 37/38. A particular half was removed from the host eye anlage and replaced with the opposite half-eye from the contralateral side of a donor embryo. Control operations consisted of removing a half-eye and replacing it with a similar half from the ipsilateral side of the donor embryo. Whereas in control animals, each half-eye projected its fibres to the appropriate half-tectum, in operated animals each half of the compound eye spread its optic teiminals across the entire rostrocaudal extent of the dorsal tectal surface. The area of tectal surface covered by ganglion fibre terminals was similar in operated animals mapped at successive stages of development to that previously observed in normal animals at equivalent stages. Therefore the factors responsible for the extended distribution of fibre terminals from each half of a compound eye must exist at least from mid-tadpole life, and thereafter be continuously present throughout development.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 159-174
Author(s):  
Charles Straznicky ◽  
David Tay

Right compound eyes were formed in Xenopus embryos at tailbud stages by the fusion of two nasal (NN), two temporal (TT) or two ventral (VV) halves. The left eye was kept intact. Two to four weeks after metamorphosis the optic nerve from the intact eye was severed to induce bilateral optic nerve regeneration. The contralateral retinotectal projections from the compound eye and the induced ipsilateral projections from the intact eye to the same (dually innervated) tectum were studied by [3H]proline autoradiography and visuotectal mapping from 3 to 6 months after the postmetamorphic surgery. The results showed that the NN, TT and VV projections, in the presence of optic fibres from the intact eye failed to spread across the whole extent of the dually innervated tectum. Unexpectedly the bulk of the regenerating projection from the intact eye was confined to the previously uninnervated parts of the dually innervated tecta, the caudomedial region in TT, the rostrolateral region in NN and the lateral region in VV eye animals. The partial segregation of the two populations of optic fibres in the dually innervated tectum has been taken as a further indication of the role of fibre-fibre and fibre-tectum interactions in retinotectal map formation.


1992 ◽  
Vol 171 (1) ◽  
pp. 373-393 ◽  
Author(s):  
THOMAS W. CRONIN ◽  
HONG Y. YAN ◽  
KAY D. BIDLE

1. Regional specialization within the triple compound eyes of the gonodactyloid stomatopod Gonodactylus oerstedii (Hansen) was studied by examining how ocular tracking of a small target was affected after occluding vision in particular ommatidial regions with black enamel paint. 2. Complete occlusion of one eye did not prevent the other eye from tracking, indicating that the two eyes act somewhat independently. However, following such treatment, the angular extent over which the seeing eye moved while tracking was reduced. 3. An eye was able to continue tracking a moving target even after occlusion of the anterior tip or after painting over all of its posterior surface except the anterior tip (restricting the visual field to a patch about 40° in diameter). Similarly, occlusion of only the midband, the medial half or the lateral half of an eye did not prevent tracking. 4. Tracking was also possible, although with decreased amplitude, when either the dorsal or the ventral hemisphere was occluded. However, when both the dorsal and ventral hemispheres were occluded, leaving only the midband for vision, the ability of an eye to track was abolished. 5. A computer model was used to investigate whether the midband alone had the potential to direct tracking in our experiments. The model's output predicts that, in spite of its restricted field of view, if the midband is oriented within 20° of the horizontal, an eye could track using the midband alone. Conditions favoring such potential tracking occurred in our experiments, but neither tracking nor targetting movements were observed. 6. We conclude that ommatidia of the dorsal and ventral hemispheres of each compound eye are essential for ocular tracking in G. oerstedii. The midband appears to play no major role in this activity. Note: Present address: Department of Zoology, The University of Maryland College Park, College Park, MD 20742, USA.


Sign in / Sign up

Export Citation Format

Share Document