positional candidate
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 45)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 582-582
Author(s):  
Mary Wojczynski ◽  
Ryan Cvejkus ◽  
Bharat Thyagarajan ◽  
Kaare Christensen ◽  
Nicole Schupf ◽  
...  

Abstract Gait speed is a heritable, robust predictor of longevity in older adults. Using genome-wide linkage analysis in 2379 individuals from 509 families (64±12 years; 45% men), we identified a locus on chromosome 16p linked to gait speed change over 7±1 years (logarithm of the odds score [LOD]=4.2). Gait speed change was calculated using a two-stage growth curve mixed-model. DNA sequencing was completed to identify single nucleotide variants (SNVs) in the linkage region. Association analyses between the 24039 SNVs in the ~1.6mBP region (3.7-5.3mBP) and gait speed change were performed adjusting for age, age2, sex, height, field center, familial relatedness and population substructure. Eleven families (188 individuals) accounted for most of the linkage signal (LOD=6.06). Associations between SNVs flanking the Mesothelin (MSLN) gene and gait speed change were identified (lead SNV rs56850119: β = -0.5±0.1, p = 6.4*10-7). Thus, MSLN is a potential positional candidate gene for mobility decline with aging.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257461
Author(s):  
Antonios Kominakis ◽  
Eirini Tarsani ◽  
Ariadne L. Hager-Theodorides ◽  
Ioannis Mastranestasis ◽  
Dimitra Gkelia ◽  
...  

In Greece, a number of local sheep breeds are raised in a wide range of ecological niches across the country. These breeds can be used for the identification of genetic variants that contribute to local adaptation. To this end, 50k genotypes of 90 local sheep from mainland Greece (Epirus, n = 35 and Peloponnesus, n = 55) were used, as well as 147 genotypes of sheep from insular Greece (Skyros, n = 21), Lemnos, n = 36 and Lesvos, n = 90). Principal components and phylogenetic analysis along with admixture and spatial point patterns analyses suggested genetic differentiation of ‘mainland-island’ populations. Genome scans for signatures of selection and genome-wide association analysis (GWAS) pointed to one highly differentiating marker on OAR4 (FST = 0.39, FLK = 21.93, FDR p-value = 0.10) that also displayed genome wide significance (FDR p-value = 0.002) during GWAS. A total number of 6 positional candidate genes (LOC106990429, ZNF804B, TEX47, STEAP4, SRI and ADAM22) were identified within 500 kb flanking regions around the significant marker. In addition, two QTLs related to fat tail deposition are reported in genomic regions 800 kb downstream the significant marker. Based on gene ontology analysis and literature evidence, the identified candidate genes possess biological functions relevant to local adaptation that worth further investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moonika H. Marana ◽  
Asma M. Karami ◽  
Jørgen Ødegård ◽  
Shaozhi Zuo ◽  
Rzgar M. Jaafar ◽  
...  

AbstractAeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis, has extensive negative effects on wild and farmed salmonids worldwide. Vaccination induces some protection under certain conditions but disease outbreaks occur even in vaccinated fish. Therefore, alternative disease control approaches are required to ensure the sustainable expansion of rainbow trout aquaculture. Selective breeding can be applied to enhance host resistance to pathogens. The present work used genome-wide association study (GWAS) to identify quantitative trait loci (QTL) associated with A. salmonicida resistance in rainbow trout. A total 798 rainbow trout exposed to A. salmonicida by bath challenge revealed 614 susceptible and 138 resistant fish. Genotyping was conducted using the 57 K single nucleotide polymorphism (SNP) array and the GWAS was performed for survival and time to death phenotypes. We identified a QTL on chromosome 16 and located positional candidate genes in the proximity of the most significant SNPs. In addition, samples from exposed fish were examined for expression of 24 immune-relevant genes indicating a systematic immune response to the infection. The present work demonstrated that resistance to A. salmonicida is moderately heritable with oligogenic architecture. These result will be useful for the future breeding programs for improving the natural resistance of rainbow trout against furunculosis.


2021 ◽  
Author(s):  
Clarissa C. Parker ◽  
Vivek M. Philip ◽  
Daniel M. Gatti ◽  
Steven Kasparek ◽  
Andrew M. Kreuzman ◽  
...  

AbstractBackgroundA strong predictor for the development of alcohol use disorders (AUDs) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool for elucidating the genetic basis of behavioral and physiological traits relevant to AUDs; but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations allow for the opportunity to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification.MethodsWe have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high density MEGAMuga and GIGAMuga arrays to obtain genotypes ranging from 77,808 – 143,259 SNPs. In addition, we performed RNA sequencing in striatum to map expression QTLs and to identify gene expression-trait correlations.ResultsWe then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exist between DNA sequence, gene expression values and ethanol-related phenotypes to prioritize our list of positional candidate genes.ConclusionsOur results can be used to identify alleles that contribute to AUDs in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shizhi Wang ◽  
Erling Strandberg ◽  
Per Arvelius ◽  
Dylan N. Clements ◽  
Pamela Wiener ◽  
...  

Abstract Background Association mapping studies of quantitative trait loci (QTL) for canine hip dysplasia (CHD) can contribute to the understanding of the genetic background of this common and debilitating disease and might contribute to its genetic improvement. The power of association studies for CHD is limited by relatively small sample numbers for CHD records within countries, suggesting potential benefits of joining data across countries. However, this is complicated due to the use of different scoring systems across countries. In this study, we incorporated routinely assessed CHD records and genotype data of German Shepherd dogs from two countries (UK and Sweden) to perform genome-wide association studies (GWAS) within populations using different variations of CHD phenotypes. As phenotypes, dogs were either classified into cases and controls based on the Fédération Cynologique Internationale (FCI) five-level grading of the worst hip or the FCI grade was treated as an ordinal trait. In a subsequent meta-analysis, we added publicly available data from a Finnish population and performed the GWAS across all populations. Genetic associations for the CHD phenotypes were evaluated in a linear mixed model using 62,089 SNPs. Results Multiple SNPs with genome-wide significant and suggestive associations were detected in single-population GWAS and the meta-analysis. Few of these SNPs overlapped between populations or between single-population GWAS and the meta-analysis, suggesting that many CHD-related QTL are population-specific. More significant or suggestive SNPs were identified when FCI grades were used as phenotypes in comparison to the case-control approach. MED13 (Chr 9) and PLEKHA7 (Chr 21) emerged as novel positional candidate genes associated with hip dysplasia. Conclusions Our findings confirm the complex genetic nature of hip dysplasia in dogs, with multiple loci associated with the trait, most of which are population-specific. Routinely assessed CHD information collected across countries provide an opportunity to increase sample sizes and statistical power for association studies. While the lack of standardisation of CHD assessment schemes across countries poses a challenge, we showed that conversion of traits can be utilised to overcome this obstacle.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer N. Kiser ◽  
Holly L. Neibergs

Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV−) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV−BRD−). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10−5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10−5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.


Author(s):  
Charlotte Brault ◽  
Agnès Doligez ◽  
Loïc le Cunff ◽  
Aude Coupel-Ledru ◽  
Thierry Simonneau ◽  
...  

Abstract Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than interval mapping for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1038
Author(s):  
Joana G. P. Jacinto ◽  
Alysta D. Markey ◽  
Inês M. B. Veiga ◽  
Julia M. Paris ◽  
Monika Welle ◽  
...  

Genodermatoses, such as heritable skin disorders, mostly represent Mendelian conditions. Congenital hypotrichosis (HY) characterize a condition of being born with less hair than normal. The purpose of this study was to characterize the clinicopathological phenotype of a breed-specific non-syndromic form of HY in Hereford cattle and to identify the causative genetic variant for this recessive disorder. Affected calves showed a very short, fine, wooly, kinky and curly coat over all parts of the body, with a major expression in the ears, the inner part of the limbs, and in the thoracic-abdominal region. Histopathology showed a severely altered morphology of the inner root sheath (IRS) of the hair follicle with abnormal Huxley and Henle’s layers and severely dysplastic hair shafts. A genome-wide association study revealed an association signal on chromosome 5. Homozygosity mapping in a subset of cases refined the HY locus to a 690 kb critical interval encompassing a cluster of type II keratin encoding genes. Protein-coding exons of six positional candidate genes with known hair or hair follicle function were re-sequenced. This revealed a protein-changing variant in the KRT71 gene that encodes a type II keratin specifically expressed in the IRS of the hair follicle (c.281delTGTGCCCA; p.Met94AsnfsX14). Besides obvious phenocopies, a perfect concordance between the presence of this most likely pathogenic loss-of-function variant located in the head domain of KRT71 and the HY phenotype was found. This recessive KRT71-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002114-9913).


2021 ◽  
Vol 12 ◽  
Author(s):  
Mehdi Emam ◽  
Saeid Tabatabaei ◽  
Mehdi Sargolzaei ◽  
Bonnie Mallard

BackgroundIn mammalian species, hypoxia is a prominent feature of inflammation. The role of hypoxia in regulating macrophage responses via alteration in metabolic pathways is well established. Recently, oxidative burst-induced hypoxia has been shown in murine macrophages after phagocytosis. Despite the available detailed information on the regulation of macrophage function at transcriptomic and epigenomic levels, the association of genetic polymorphism and macrophage function has been less explored. Previously, we have shown that host genetics controls approximately 80% of the variation in an oxidative burst as measured by nitric oxide (NO-). Further studies revealed two clusters of transcription factors (hypoxia-related and inflammatory-related) are under the genetic control that shapes macrophages’ pro-inflammatory characteristics.Material and MethodsIn the current study, the association between 43,066 autosomal Single Nucleic Polymorphism (SNPs) and the ability of MDMs in production of NO- in response to E. coli was evaluated in 58 Holstein cows. The positional candidate genes near significant SNPs were selected to perform functional analysis. In addition, the interaction between the positional candidate genes and differentially expressed genes from our previous study was investigated.ResultsSixty SNPs on 22 chromosomes of the bovine genome were found to be significantly associated with NO- production of macrophages. The functional genomic analysis showed a significant interaction between positional candidate genes and mitochondria-related differentially expressed genes from the previous study. Further examination showed 7 SNPs located in the vicinity of genes with roles in response to hypoxia, shaping approximately 73% of the observed individual variation in NO- production by MDM. Regarding the normoxic condition of macrophage culture in this study, it was hypothesized that oxidative burst is responsible for causing hypoxia at the cellular level.ConclusionThe results suggest that the genetic polymorphism via regulation of response to hypoxia is a candidate step that perhaps shapes macrophage functional characteristics in the pathway of phagocytosis leading to oxidative burst, hypoxia, cellular response to hypoxia and finally the pro-inflammatory responses. Since all cells in one individual carry the same alleles, the effect of genetic predisposition of sensitivity to hypoxia will likely be notable on the clinical outcome to a broad range of host-pathogen interactions.


Sign in / Sign up

Export Citation Format

Share Document