A New Junctional Structure in the Epithelia of Insects of the Order Dictyoptera

1972 ◽  
Vol 10 (3) ◽  
pp. 683-691
Author(s):  
N. E. FLOWER

The junctional complexes in the epithelia of insects of the order Dictyoptera have been investigated using the freeze-etch technique. As well as septate junctions, a new type of junction has been identified and the name ‘inverted gap junction’ proposed. The patch-like distribution of the inverted gap junctions basal to and often closely associated with septate junctions is very similar to the form of gap junctions and their relationship to tight junctions in vertebrates. This suggests that the inverted gap junctions, like normal gap junctions, could perform a communicating function between epithelial cells. The following features distinguish inverted gap junctions from normal gap junctions in freeze-etch preparations: (i) the arrays of particles and holes within inverted gap junctions appear on B- and A-type faces respectively, i.e. on the opposite faces to the particles and holes in gap junctions; (ii) the particles within inverted gap junctions appear to lie in rows which anastomose to form an irregular net, and not in an hexagonal array, as occurs in gap junctions.

1976 ◽  
Vol 69 (2) ◽  
pp. 495-501 ◽  
Author(s):  
J C Herr

Ajacent processes on ovarian decidual cells were shown by electron microscopy to form gap junctions with one another. Micrographs of tissues preserved with lanthanum included in the fixative confirm the hexagonal array and 2-4 nm gap which characterize gap junctions. It is suggested that these gap junctions may play a role in the process of merocrine secretion from the peduncular processes of ovarian decidual cells. The term reflexive gap junction is introduced to describe gap junctions between adjacent processes from the same cell.


2002 ◽  
Vol 283 (5) ◽  
pp. L875-L893 ◽  
Author(s):  
Michael Koval

Gap junction channels enable the direct flow of signaling molecules and metabolites between cells. Alveolar epithelial cells show great variability in the expression of gap junction proteins (connexins) as a function of cell phenotype and cell state. Differential connexin expression and control by alveolar epithelial cells have the potential to enable these cells to regulate the extent of intercellular coupling in response to cell stress and to regulate surfactant secretion. However, defining the precise signals transmitted through gap junction channels and the cross talk between gap junctions and other signaling pathways has proven difficult. Insights from what is known about roles for gap junctions in other systems in the context of the connexin expression pattern by lung cells can be used to predict potential roles for gap junctional communication between alveolar epithelial cells.


1986 ◽  
Vol 84 (1) ◽  
pp. 1-17
Author(s):  
N.J. Lane ◽  
R. Dallai ◽  
P. Burighel ◽  
G.B. Martinucci

The intestinal tracts from seven different species of tunicates, some solitary, some colonial, were studied fine-structurally by freeze-fracture. These urochordates occupy an intermediate position phylogenetically between the vertebrates and the invertebrates. The various regions of their gut were isolated for examination and the junctional characteristics of each part investigated. All the species examined exhibited unequivocal vertebrate-like belts of tight-junctional networks at the luminal border of their intestinal cells. No septate junctions were observed. The tight junctions varied in the number of their component strands and the depth to which they extended basally, some becoming loose and fragmented towards that border. The junctions consisted of ridges or rows of intramembranous particles (IMPs) on the P face, with complementary, but offset, E face grooves into which IMPs sometimes fractured. Tracer studies show that punctate appositions, the thin-section correlate of these ridge/groove systems, are sites beyond which exogenous molecules do not penetrate. These junctions are therefore likely to represent permeability barriers as in the gut tract of higher chordates. Associated with these occluding zonular junctions are intermediate junctions, which exhibit no identifiable freeze-fracture profile, and macular gap junctions, characterized by a reduced intercellular cleft in thin section and by clustered arrays of P face particles in freeze-fractured replicas; these display complementary aggregates of E face pits. The diameters of these maculae are rarely very large, but in certain species (for example, Ciona), they are unusually small. In some tissues, notably those of Diplosoma and Botryllus, they are all of rather similar size, but very numerous. In yet others, such as Molgula, they are polygonal with angular outlines, as might be indicative of the uncoupled state. In many attributes, these various junctions are more similar to those found in the tissues of vertebrates, than to those in the invertebrates, which the adult zooid forms of these lowly chordates resemble anatomically.


1976 ◽  
Vol 22 (2) ◽  
pp. 371-383 ◽  
Author(s):  
C.A. Middleton ◽  
S.M. Pegrum

The behaviour of primary cultures of dissociated embryonic chick pigmented retina epithelial (PRE) cells has been investigated. Isolated PRE cells have a mean speed of locomotion of 7–16 mum/h. Collisions between the cells normally result in the development of stable contacts between the cells involved. This leads to a gradual reduction in the number of isolated cells and an increase in the number of cells incorporated into islands. Ultrastructural observations of islands of cells after 24 h in culture show that junctional complexes are present between the cells. These complexes consist of 2 components: (a) an apically situated region of focal tight junctions and/or gap junctions, and (b) a more ventrally located zonula adhaerens with associated cytoplasmic filaments forming a band running completely around the periphery of each cell. The intermembrane gap in the region of the zonula is 6-0-12-0 nm. The junctional complexes become more differentiated with time and after 48 h in culture consist of an extensive region of tight junctions and/or gap junctions and a more specialized zonula adhaerens. It is suggested that the development of junctional complexes may be responsible for the stable contacts that the cells display in culture.


1972 ◽  
Vol 53 (2) ◽  
pp. 271-289 ◽  
Author(s):  
Constantino Sotelo ◽  
Rodolfo Llinás

"Gap" junctions, the morphological correlate for low-resistance junctions, are demonstrated between some mossy fiber terminals and granule cell dendrites in some lower vertebrate cerebella (gymnotid and frog). Most of the gap junctions (GJs) seen in the gymnotid-fish cerebellum exhibit an asymmetrical configuration, the electron-opaque cytoplasmic material underlying the junction being more extensive in the dendritic than in the axonal side. In the frog cerebellum, the GJs have a symmetrical distribution of such electron-opaque material. In both species the GJs are encountered at the same synaptic interface as the conventional synaptic zone (CSZ), constituting "mixed synapses" in a morphological sense. The axonal surface covered by CSZs is larger than that covered by GJs. In mammalian cerebellum, GJs are observed only in the molecular layer, between perikarya, dendrites, or perikarya and dendrites of the inhibitory interneurons. These GJs are intermixed with attachment plates and intermediary junctions interpreted as simply adhesive. In the mammalian cerebellum, a new type of junction which resembles the septate junctions (SJs) of invertebrate epithelia is observed between axonal branches forming the tip of the brush of basket fibers around the initial segment of the Purkinje cell axon. It is suggested that such junctions may be modified forms of septate junctions. The physiological implications of the possible existence of high-resistance cross-bridges between basket cell terminals, which may compartmentalize the extracellular space and thus regulate extracellular current flow, must be considered.


1971 ◽  
Vol 50 (1) ◽  
pp. 92-101 ◽  
Author(s):  
A. J. Hudspeth ◽  
J. P. Revel

The intercellular junctions of the epithelium lining the hepatic caecum of Daphnia were examined. Electron microscope investigations involved both conventionally fixed material and tissue exposed to a lanthanum tracer of the extracellular space. Both septate junctions and gap junctions occur between the cells studied. The septate junctions lie apically and resemble those commonly discerned between cells of other invertebrates. They are atypical in that the high electron opacity of the extracellular space obscures septa in routine preparations. The gap junctions are characterized by a uniform 30 A space between apposed cell membranes. Lanthanum treatment of gap junctions reveals an array of particles of 95 A diameter and 120 A separation lying in the plane of the junction. As this pattern closely resembles that described previously in vertebrates, it appears that the gap junction is phylogenetically widespread. In view of evidence that the gap junction mediates intercellular electrotonic coupling, the assignment of a coupling role to other junctions, notably the septate junction, must be questioned wherever these junctions coexist.


2001 ◽  
Vol 280 (6) ◽  
pp. L1085-L1093 ◽  
Author(s):  
Valsamma Abraham ◽  
Michael L. Chou ◽  
Philip George ◽  
Patricia Pooler ◽  
Aisha Zaman ◽  
...  

We analyzed the pattern of gap junction protein (connexin) expression in vivo by indirect immunofluorescence. In normal rat lung sections, connexin (Cx)32 was expressed by type II cells, whereas Cx43 was more ubiquitously expressed and Cx46 was expressed by occasional alveolar epithelial cells. In response to bleomycin-induced lung injury, Cx46 was upregulated by alveolar epithelial cells, whereas Cx32 and Cx43 expression were largely unchanged. Given that Cx46 may form gap junction channels with either Cx43 or Cx32, we examined the ability of primary alveolar epithelial cells cultured for 6 days, which express Cx43 and Cx46, to form heterocellular gap junctions with cells expressing other connexins. Day 6 alveolar epithelial cells formed functional gap junctions with other day 6 cells or with HeLa cells transfected with Cx43 (HeLa/Cx43), but they did not communicate with HeLa/Cx32 cells. Furthermore, day 6alveolar epithelial cells formed functional gap junction channels with freshly isolated type II cells. Taken together, these data are consistent with the notion that type I and type II alveolar epithelial cells communicate through gap junctions compatible with Cx43.


1979 ◽  
Vol 36 (1) ◽  
pp. 391-400
Author(s):  
M.G. King ◽  
A.N. Spencer

The morphological basis of impulse conduction in a jellyfish epithelium was investigated. Lanthanum impregnation of endodermal canal and endodermal lamella verified the existence of true gap junctions in Polyorchis. In both transverse and en face sections of gap junctions, electron-lucent globules, with a width of 7–8 nm and a spacing of about 11 nm, are evident. Gap-junctions are concentrated at the peripheral canal margin and septate junctions are localized around the canal lumen. Epithelial cells of the endodermal canals are capable of conducting a non-decrementing action potential. It is suggested that endodermal spike propagation, which can mediate ‘crumpling’ behaviour, is dependent upon low-resistence ionic pathways provided by gap-junctions and upon sealing of the intercellular space from saline extracellular fluids by septate junctions.


1976 ◽  
Vol 22 (3) ◽  
pp. 597-606
Author(s):  
H. Fujisawa ◽  
H. Morioka ◽  
H. Nakamura ◽  
K. Watanabe

Gap junctions in the neural retinae of newly hatched chickens were examined in thin section and by freeze cleaving. Unusual gap junctions containing linear arrays of intramembrane particles are found between principal and accessory cones which form a double cone at the region of the outer limiting membrane. These unusual gap junctions are often continuous with macular aggregates of hexagonally packed intramembrane particles which are characteristic of a typical gap junction. Typical gap junctions are also found in both the outer and the inner plexiform layers and in the outer nuclear layer, but are not so abundant as in the outer limiting membrane region. The sizes of intramembrane particles and their centre-to-centre spacing within the macular aggregate of a gap junction in differentiated neural retinae are slightly larger than those in undifferentiated neural retinae. Tight junctions are not found in differentiated neural retinae.


2001 ◽  
Vol 20 (11) ◽  
pp. 577-583 ◽  
Author(s):  
S-H Jeong ◽  
M-H Cho ◽  
J-H Cho

Cadmium has been associated with a number of tumors but its role in tumor promotion has not been elucidated clearly or the results obtained from various studies have been conflicting. This study was designed to investigate the effects of cadmium on the gap junctional intercellular communication (GJIC), number of gap junctions per cell, and cell proliferation in WB-F344 rat liver epithelial cells from the viewpoint of tumor promotion. GJIC was monitored by counting the cells stained with Lucifer yellow CH dye, using the scrape-loading and dye-transfer method. The numbers of gap junctions per cell were visually quantitated after an indirect immunostaining for gap junction protein using an antibody to connexin 43. Cell proliferation was assayed by direct counting of the living cells using the trypan blue dye exclusion method. In the time course study, cells treated with 200 μM CdCl2 showed rapid and nearly complete inhibition of GJIC (approximately 14% of the control) and a decrease in the number of gap junctions per cell (approximately 21% of the control) at 30 min, and the decrease continued up to 4 h without any changes in the cell viability. Treatment with CdCl2 7.4-200 μM) for 4 h resulted in the decrease of GJIC and gap junction numbers per cell in a dose-response pattern without changes in the cell viability. In the long-term (14 days) exposure studies at doses of 0.01-7.4 μM CdCl2, an increase in cell proliferation was observed at low doses of 0.03-2.5 μM CdCl2, with GJIC also decreasing. These data demonstrate that cadmium inhibits GJIC, reduces the number of gap junctions per cell, and induces cell proliferation while decreasing the function of the gap junction.


Sign in / Sign up

Export Citation Format

Share Document