Characterisation of potential adhesins of the bacterium Pasteuria penetrans, and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host

1991 ◽  
Vol 100 (3) ◽  
pp. 613-622
Author(s):  
A. Persidis ◽  
J.G. Lay ◽  
T. Manousis ◽  
A.H. Bishop ◽  
D.J. Ellar

Pasteuria penetrans spores were fragmented by glass bead vortexing, producing exosporial membranes and spore fragments, which consisted of fibre bundles. Both exosporia and spore fragments are capable of host-specific attachment to the cuticle of Meloidogyne incognita, a root-knot nematode host. Putative M. incognita receptors appear to be soluble in beta-mercaptoethanol (BME) but not SDS, and are also sensitive to tryptic digestion and deglycosylation by endoglycosidase F. Polyclonal antibodies against intact spores and spore fragments of antispore antibodies produced 100% inhibition. The antibodies, however, did not show preferential staining of particular spore structures in thin section immunolabelling studies. Exposure of Pasteuria penetrans spores to HCl or urea-SDS-dithiothreitol renders them incapable of attachment to their host juveniles and extensively disrupts fibres that surround the spore core. Protein extracts from spore fragments or from exosporial membranes are identical, and urea-BME extracts from either structure, but not SDS extracts, can inhibit the attachment of spores to juveniles by 60–80%. An inhibitory BME extract from spore fragments was analysed by anion-exchange chromatography and adsorption onto host cuticle followed by immunoblotting. It appeared to contain six potential spore adhesins of approximate Mr 24–29, 38–47, 59, 89, 126, and 190 (x10(3)). Lectin affinity blotting with wheat germ agglutinin and concanavalin A showed that all of these proteins bear terminal N-acetylglucosamine residues and the 38–47 kDa band also bears terminal Glc/Man residues.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 105 (4) ◽  
pp. 891-901 ◽  
Author(s):  
J. Chang-Jie ◽  
S. Sonobe

Microtubules in plant cells, as in animal cells, are dynamic structures. However, our lack of knowledge about the constituents of microtubules in plant cells has prevented us from understanding the mechanisms that control microtubule dynamics. To characterize some of these constituents, a cytoplasmic extract was prepared from evacuolated protoplasts (miniprotoplasts) of tobacco BY-2 cells, and microtubules were assembled in the presence of taxol and disassembled by cold treatment in the presence of Ca2+ and a high concentration of NaCl. SDS-PAGE analysis of triple-cycled microtubule protein revealed the presence of 120 kDa, 110 kDa and a group of 60–65 kDa polypeptides in addition to tubulin. Since these polypeptides had copolymerized with tubulin, through the three cycles of assembly and disassembly, and they bundle microtubules, we tentatively identified the three polypeptides as microtubule-associated proteins (MAPs). To characterize these factors further, triple-cycled microtubule protein was fractionated by Mono-Q anion-exchange chromatography and the microtubule-bundling activity of each fraction was examined. Fractions having microtubule-bundling activity contained only the 65 kDa MAP, an indication that the 65 kDa MAP is responsible for the bundling of microtubules. Purified 65 kDa MAP formed cross-bridge structures between adjacent microtubules in vitro. Polyclonal antibodies were raised in mice against the 65 kDa MAP. Immunofluorescence microscopy revealed that the 65 kDa MAP colocalized with microtubules in BY-2 cells throughout the cell cycle. Western blotting analysis of extracts from several species of plants suggested that the 65 kDa MAP and/or related peptides are widely distributed in the plant kingdom.


Nematology ◽  
2007 ◽  
Vol 9 (6) ◽  
pp. 845-851 ◽  
Author(s):  
Maria Célia Cordeiro ◽  
Regina Carneiro ◽  
Pedro Cirotto ◽  
Luiz de Mesquita ◽  
Maria Ritta Almeida ◽  
...  

AbstractAn obligate parasite bacterium of the root-knot nematode, Pasteuria penetrans strain P10, isolated from Meloidogyne incognita females on banana roots in Imperatriz Maranhão State, Brazil, was evaluated in glasshouse conditions, using two doses of a dry root bionematicide (107 endospores (5.0 g/seedling) and 106 endospores (0.5 g/seedling)) on seedlings of cv. Mundo Novo coffee. The soil in which coffee seedlings were raised was inoculated previously with these two doses of P. penetrans and after 2 months the plants were transferred to soils of different textures: clay-sandy soil (38% clay, 2% silt and 60% sand) and sandy soil (17% clay, 0% silt and 83% sand). When the coffee plants were 30 cm high, they were inoculated with 20 000 eggs/plant of M. incognita race 1. The coffee plants were examined 8, 16 and 24 months after nematode plant infestation. The effectiveness of the biological control was determined by the reduction of nematode reproduction factor, which ranged from 62 to 67% in clay-sandy soil and 80 to 85% in sandy soil. The mechanism of suppression caused by the bacterium was evaluated by the percentage of infected second-stage juveniles (J2), number of endospores attached/J2 and number of infected females. The high levels of suppression were related to time, increasing from 8 to 24 months, and to the percentage of sand in the soil.


1998 ◽  
Vol 11 (10) ◽  
pp. 952-959 ◽  
Author(s):  
X. Ding ◽  
J. Shields ◽  
R. Allen ◽  
R. S. Hussey

A cDNA encoding a secretory cellulose-binding protein was cloned from the root-knot nematode (Meloidogyne incognita) with RNA fingerprinting. The putative full-length cDNA, named Mi-cbp-1, encoded a 203 amino acid protein containing an N-terminal secretion signal peptide. The C-terminal sequence of the putative MI-CBP-1 was similar to a bacterial-type cellulose-binding domain, whereas the N-terminal sequence did not show significant similarity to any proteins in data bases. Recombinant MI-CBP-1 lacked cellulase activity, but bound to cellulose and plant cell walls. In Southern blot hybridization, Mi-cbp-1 hybridized with genomic DNA from M. incognita, M. arenaria, and M. javanica, but not M. hapla, Heterodera glycines, or Caenorhabditis elegans. Polyclonal antibodies raised against recombinant MI-CBP-1 strongly labeled secretory granules in subventral gland cells of second-stage juveniles in indirect immunofluorescence microscopy. Enzyme-linked immunosorbent assay detection of MI-CBP-1 in stylet secretions of second-stage juveniles with the polyclonal antibodies indicated MI-CBP-1 could be secreted through the nematodes' stylet, suggesting that the cellulose-binding protein may have a role in pathogenesis.


2001 ◽  
Vol 14 (1) ◽  
pp. 72-79 ◽  
Author(s):  
Jean-Philippe Semblat ◽  
Marie-Noëlle Rosso ◽  
Richard S. Hussey ◽  
Pierre Abad ◽  
Philippe Castagnone-Sereno

Amplified fragment length polymorphism fingerprinting of three pairs of Meloidogyne incognita near-isogenic lines (NILs) was used to identify markers differential between nematode genotypes avirulent or virulent against the tomato Mi resistance gene. One of these sequences, present only in the avirulent lines, was used as a probe to screen a cDNA library from second-stage juveniles (J2s) and allowed cloning of a cDNA encoding a secretory protein. The putative full-length cDNA, named map-1, encoded a 458 amino acid (aa) protein containing a predictive N-terminal secretion signal peptide. The MAP-1 sequence did not show any significant similarity to proteins deposited in databases. The internal part of the protein, however, was characterized by highly conserved repetitive motives of 58 or 13 aa. Reverse transcription polymerase chain reaction (RT-PCR) experiments confirmed that map-1 expression was different between avirulent and virulent NILs. In PCR reactions, map-1-related sequences were amplified only in nematode populations belonging to the three species against which the Mi gene confers resistance: M. arenaria, M. incognita, and M. javanica. Polyclonal antibodies raised against a synthetic peptide deduced from the MAP-1 sequence strongly labeled J2 amphidial secretions in immunofluorescence microscopy assays, suggesting that MAP-1 may be involved in the early steps of recognition between (resistant) plants and (avirulent) nematodes.


Nematology ◽  
1999 ◽  
Vol 1 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Robin Duponnois ◽  
Amadou M. BÂ ◽  
Thierry Mateille

Abstract Two rhizosphere bacteria, Enterobacter cloacae and Pseudomonas mendocina, were isolated from the rhizosphere of tomato plants growing in a soil heavily infested with both root-knot nematodes and the parasitoid endospore-forming bacterium Pasteuria penetrans. Bacteria E. cloacae and P. mendocina stimulated plant growth, inhibited the reproduction of the root knot nematode Meloidogyne incognita, and increased the attachment of the endospores of P. penetrans on the nematodes in vitro. E. cloacae significantly increased the reproduction of P. penetrans in plant roots. Consequently, the introduction of such bacteria in soils, or cultural practices aimed to increase the activity of native strains of these bacteria, could greatly contribute to the efficiency of nematode biocontrol with P. penetrans. Stimulation de l'activite antagoniste de Pasteuria penetrans envers Meloidogyne incognita par Enterobacter cloacae et Pseudomonas mendocina - Deux bacteries rhizospheriques, Enterobacter cloacae et Pseudomonas mendocina, ont ete isolees a partir de la rhizosphere de plants de tomate preleves dans un sol tres infeste par des nematodes a galles et l'actinomycete Pasteuria penetrans. Les deux souches bacteriennes ont stimule la croissance de la plante, inhibe le developpement du nematode Meloidogyne incognita et augmente in vitro l'attachement des spores de P. penetrans sur la cuticule des nematodes. E. cloacae a significativement stimule la multiplication de P. penetrans dans les racines. En consequence, l'utilisation de telles bacteries pourrait ameliorer de maniere importante l'efficacite de P. penetrans contre les nematodes du genre Meloidogyne.


Fruits ◽  
2009 ◽  
Vol 64 (5) ◽  
pp. 295-303 ◽  
Author(s):  
Hang Ye ◽  
Wen-jun Wang ◽  
Guo-jie Liu ◽  
Li-xin Zhu ◽  
Ke-gong Jia

2020 ◽  
Author(s):  
Ian Sims ◽  
A Bacic

The soluble polymers secreted by cell-suspension cultures of Nicotiana plumbaginifolia contained 78% carbohydrate, 6% protein and 4% inorganic material. The extracellular polysaccharides were separated into three fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7 and the individual polysaccharides in each fraction were then isolated by selective precipitation and enzymic treatment. Monosaccharide and linkage compositions were determined for each polysaccharide after reduction of uronic acid residues and the degree of esterification of the various uronic acid residues in each polysaccharide was determined concurrently with the linkage types. Six components were identified: an arabinoxyloglucan (comprising 34% of the total polysaccharide) and a galactoglucomannan (15%) in the unbound neutral fraction, a type II arabinogalactan (an arabinogalactan-protein, 11%) and an acidic xylan (3%) in the first bound fraction, and an arabinoglucuronomannan (11%) and a galacturonan (26%) in the second bound fraction. © 1995.


Sign in / Sign up

Export Citation Format

Share Document