Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein

1993 ◽  
Vol 105 (4) ◽  
pp. 891-901 ◽  
Author(s):  
J. Chang-Jie ◽  
S. Sonobe

Microtubules in plant cells, as in animal cells, are dynamic structures. However, our lack of knowledge about the constituents of microtubules in plant cells has prevented us from understanding the mechanisms that control microtubule dynamics. To characterize some of these constituents, a cytoplasmic extract was prepared from evacuolated protoplasts (miniprotoplasts) of tobacco BY-2 cells, and microtubules were assembled in the presence of taxol and disassembled by cold treatment in the presence of Ca2+ and a high concentration of NaCl. SDS-PAGE analysis of triple-cycled microtubule protein revealed the presence of 120 kDa, 110 kDa and a group of 60–65 kDa polypeptides in addition to tubulin. Since these polypeptides had copolymerized with tubulin, through the three cycles of assembly and disassembly, and they bundle microtubules, we tentatively identified the three polypeptides as microtubule-associated proteins (MAPs). To characterize these factors further, triple-cycled microtubule protein was fractionated by Mono-Q anion-exchange chromatography and the microtubule-bundling activity of each fraction was examined. Fractions having microtubule-bundling activity contained only the 65 kDa MAP, an indication that the 65 kDa MAP is responsible for the bundling of microtubules. Purified 65 kDa MAP formed cross-bridge structures between adjacent microtubules in vitro. Polyclonal antibodies were raised in mice against the 65 kDa MAP. Immunofluorescence microscopy revealed that the 65 kDa MAP colocalized with microtubules in BY-2 cells throughout the cell cycle. Western blotting analysis of extracts from several species of plants suggested that the 65 kDa MAP and/or related peptides are widely distributed in the plant kingdom.

1994 ◽  
Vol 107 (8) ◽  
pp. 2249-2257 ◽  
Author(s):  
T. Asada ◽  
H. Shibaoka

As part of our efforts to understand the molecular basis of the microtubule-associated motility that is involved in cytokinesis in higher plant cells, an attempt was made to identify proteins with the ability to translocate microtubules in an extract from isolated phragmoplasts. Homogenization of isolated phragmoplasts in a solution that contained MgATP, MgGTP and a high concentration of NaCl resulted in the release from phragmoplasts of factors with ATPase and GTPase activity that were stimulated by microtubules. A protein fraction with microtubule-dependent ATPase and GTPase activity caused minus-end-headed gliding of microtubules in the presence of ATP or GTP. Polypeptides with microtubule-translocating activity cosedimented with microtubules that had been assembled in vitro from brain tubulin and were dissociated from sedimented microtubules by addition of ATP or GTP. After cosedimentation and dissociation procedures, a 125 kDa polypeptide and a 120 kDa polypeptide were recovered in a fraction that supported minus-end-headed gliding of microtubules. The rate of microtubule gliding that was caused by the fraction that contained the 125 kDa and 120 kDa polypeptides as main components was 1.28 microns/minute in the presence of ATP and 0.50 microns/minute in the presence of GTP. This fraction contained some microtubule-associated polypeptides in addition to the 125 kDa and 120 kDa polypeptides, but a fraction that contained only these additional polypeptides did not cause any translocation of microtubules. Thus, it appeared that the 125 kDa and 120 kDa polypeptides were responsible for translocation of microtubules. These polypeptides with plus-end-directed motor activity may play an important role in formation of the cell plate and in the organization of the phragmoplast.


2002 ◽  
Vol 115 (9) ◽  
pp. 1973-1984
Author(s):  
Kwanghee Kim ◽  
Min Son ◽  
Joan B. Peterson ◽  
David L. Nelson

We purified two small, acidic calcium-binding proteins(ParameciumCa2+-binding proteins, PCBP-25α and PCBP-25β) from Paramecium tetraurelia by Ca2+-dependent chromatography on phenyl-Sepharose and by anion-exchange chromatography. The proteins were immunologically distinct. Monoclonal antibodies against PCBP-25β did not react with PCBP-25α, and antibodies against centrin from Chlamydomonas reacted with PCBP-25α but not with PCBP-25β. Like the centrins described previously, both PCBPs were associated with the infraciliary lattice (ICL), a fibrillar cytoskeletal element in Paramecium. Both were also present in isolated cilia, from which they could be released (with dynein) by a high-salt wash, and both PCBPs cosedimented with dynein in a sucrose gradient. PCBP-25β was especially prominent in cilia and in the deciliation supernatant, a soluble fraction released during the process of deciliation. The results of immunoreactivity and localization experiments suggest that PCBP-25α is a Paramecium centrin and that PCBP-25β is a distinct Ca2+-binding protein that confers Ca2+ sensitivity on some component of the cilium, ciliary basal body or ICL.We characterized these proteins and Paramecium calmodulin as substrates for two Ca2+-dependent protein kinases purified from Paramecium. PCBP-25α and calmodulin were in vitro substrates for one of the two Ca2+-dependent protein kinases (CaPK-2), but only PCBP-25α was phosphorylated by CaPK-1. These results raise the possibility that the biological activities of PCBP-25α and calmodulin are regulated by phosphorylation.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 942-952 ◽  
Author(s):  
L Zhang ◽  
A Jhingan ◽  
FJ Castellino

Abstract To evaluate the contributions of individual gamma-carboxyglutamic acid (gla) residues to the overall Ca(2+)-dependent anticoagulant activity of activated human protein C (APC), we used recombinant (r) DNA technology to generate protein C (PC) variants in which each of the gla precursor glutamic acid (E) residues (positions 6, 7, 14, 16, 19, 20, 25, 26, and 29) was separately altered to aspartic acid (D). In one case, a gla26V mutation ([gla26V]r-PC) was constructed because a patient with this particular substitution in coagulation factor IX had been previously identified. Two additional r-PC mutants were generated, viz, an r-PC variant containing a substitution at arginine (R) 15 ([R15]r-PC), because this particular R residue is conserved in all gla- containing blood coagulation proteins, as well as a variant r-PC with substitution of an E at position 32 ([F31L, Q32E]r-PC), because gla residues are found in other proteins at this sequence location. This latter protein did undergo gamma-carboxylation at the newly inserted E32 position. For each of the 11 recombinant variants, a subpopulation of PC molecules that were gamma-carboxylated at all nonmutated gla- precursor E residues has been purified by anion exchange chromatography and, where necessary, affinity chromatography on an antihuman PC column. The r-PC muteins were converted to their respective r-APC forms and assayed for their amidolytic activities and Ca(2+)-dependent anticoagulant properties. While no significant differences were found between wild-type (wt) r-APC and r-APC mutants in the amidolytic assays, lack of a single gla residue at any of the following locations, viz, 7, 16, 20, or 26, led to virtual complete disappearance of the Ca(2+)-dependent anticoagulant activity of the relevant r-APC mutant, as compared with its wt counterpart. On the other hand, single eliminations of any of the gla residues located at positions 6, 14, or 19 of r-APC resulted in variant recombinant molecules with substantial anticoagulant activity (80% to 92%), relative to wtr-APC. Mutation of gla residues at positions 25 and 29 resulted in r-APC variants with significant but low (24% and 9% of wtr-APC, respectively) levels of anticoagulant activity. The variant, [R15L]r-APC, possessed only 19% of the anticoagulant activity of wrt-APC, while inclusion of gla at position 32 in the variant, [F31L, Q32gla]r-APC, resulted in a recombinant enzyme with an anticoagulant activity equivalent to that of wtr-APC.


2020 ◽  
Vol 10 (8) ◽  
pp. 2648 ◽  
Author(s):  
Paolina Lukova ◽  
Mariana Nikolova ◽  
Emmanuel Petit ◽  
Redouan Elboutachfaiti ◽  
Tonka Vasileva ◽  
...  

The aim of the present study was to evaluate the prebiotic potential of Plantago major L. leaves water-extractable polysaccharide (PWPs) and its lower molecular fractions. The structure of PWPs was investigated by high pressure anion exchange chromatography (HPAEC), size exclusion chromatography coupled with multi-angle laser light scattering detector (SEC-MALLS) and Fourier-transform infrared (FTIR) spectroscopy. The chemical composition and monosaccharide analyses showed that galacturonic acid was the main monosaccharide of PWPs followed by glucose, arabinose, galactose, rhamnose and xylose. FTIR study indicated a strong characteristic absorption peak at 1550 cm−1 corresponding to the vibration of COO− group of galacturonic acid. The PWPs was subjected to hydrolysis using commercial enzymes to obtain P. major low molecular fraction (PLM) which was successively separated by size exclusion chromatography on Biogel P2. PWPs and PLM were examined for in vitro prebiotic activity using various assays. Results gave evidence for changes in optical density of the bacteria cells and pH of the growth medium. A heterofermentative process with a lactate/acetate ratio ranged from 1:1 to 1:5 was observed. The ability of PLM to stimulate the production of certain probiotic bacteria glycohydrolases and to be fermented by Lactobacillus sp. strains was successfully proved.


1993 ◽  
Vol 291 (3) ◽  
pp. 713-721 ◽  
Author(s):  
M Odenthal-Schnittler ◽  
S Tomavo ◽  
D Becker ◽  
J F Dubremetz ◽  
R T Schwarz

In this paper we report experiments demonstrating the presence of N-linked oligosaccharide structures in Toxoplasma gondii tachyzoites, providing the first direct biochemical evidence that this sporozoan parasite is capable of synthesizing N-linked glycans. The tachyzoite surface glycoprotein gp23 was metabolically labelled with [3H]glucosamine and [3H]mannose. Gel-filtration chromatography on Bio-Gel P4 columns produced four radiolabelled N-linked glycopeptides which were sensitive to peptidase-N-glycanase F, but resistant to endoglycosidases H and F. Using chemical analysis and exoglycosidase digestions followed by Dionex-high-pH anion-exchange chromatography and size fractionation on Bio-Gel P4 we show that gp23 has N-linked glycans in the hybrid- or complex-type structure composed of N-acetylgalactosamine, N-acetylglucosamine and mannose and devoid of sialic acid and fucose residues. In addition, the sensitivity of glycopeptides from glycoprotein extracts to endoglycosidases H and F revealed the in vivo synthesis of oligomannose-type structures by T. gondii tachyzoites. We have extended these findings by demonstrating the ability of T. gondii microsomes to synthesize in vitro a glucosylated lipid-bound high-mannose structure (Glc3Man9GlcNAc2) that is assumed to be identical with the common precursor for N-glycosylation in eukaryotes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Sun ◽  
Tzi-Bun Ng ◽  
Hexiang Wang ◽  
Guoqing Zhang

Little was known about bioactive compounds from the hallucinogenic mushroomBoletus speciosus. In the present study, a hemagglutinin (BSH,B. speciosushemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210)in vitro, with IC50of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50of 7.1 μM.


1992 ◽  
Vol 70 (8) ◽  
pp. 636-642 ◽  
Author(s):  
Wei-Li Hu ◽  
Paul A. Chindemi ◽  
Erwin Regoeczi

Production of rat transferrin containing a single hybrid glycan was induced by treating rats with swainsonine, an inhibitor of α-mannosidase II. The principal component of this variant transferrin containing one sialic acid residue per mole of protein was separated from other forms of transferrin by anion-exchange chromatography, followed by lectin affinity chromatography. Transferrin bearing the hybrid glycan was degraded in vivo with a half-life of 14 h as compared with 40 h for transferrin containing a standard diantennary glycan. By using 125I-labelled tyramine-cellobiose, a label whose discharge from lysosomes is strongly retarded, organs rich in reticuloendothelial elements (liver, bone marrow, lungs, and spleen) were identified as the major sites of catabolism of the transferrin variant. The liver took up more 59Fe from the variant (26% of the dose in 90 min) than from control rat transferrin (12%). The excess iron uptake was reduced by the intravenous injection of either human transferrin or ovalbumin, and it was abolished by administering both. Macrophages from bone marrow and lungs degraded the transferrin variant in vitro. The degradation was significantly enhanced when transferrin receptors were blocked by human transferrin, and it was significantly reduced by ovalbumin and methyl glucopyranoside.Key words: glycoprotein, iron metabolism, lectin, plasma protein metabolism, transferrin.


1986 ◽  
Vol 102 (3) ◽  
pp. 812-820 ◽  
Author(s):  
D Giulian ◽  
D G Young

Glia-promoting factors (GPFs) are brain peptides which stimulate growth of specific macroglial populations in vitro. To identify the cellular sources of GPFs, we examined enriched brain cell cultures and cell lines derived from the nervous system for the production of growth factors. Ameboid microglia secreted astroglia-stimulating peptides, while growing neurons were the best source of the oligodendroglia-stimulating factors. These secretion products co-purified by gel filtration, anion exchange chromatography, and reverse-phase high performance liquid chromatography with GPFs isolated from goldfish and rat brain. Our findings suggest that glial growth in the central nervous system is regulated in part by a signaled release of peptides from specific secretory cells.


Sign in / Sign up

Export Citation Format

Share Document