The matrix secreted by 804G cells contains laminin-related components that participate in hemidesmosome assembly in vitro

1993 ◽  
Vol 105 (3) ◽  
pp. 753-764 ◽  
Author(s):  
M. Langhofer ◽  
S.B. Hopkinson ◽  
J.C. Jones

Hemidesmosomes are important adhesion devices found in epithelial cells. They connect the intermediate filament cytoskeleton network with components of the basement membrane zone. 804G cells are an unusual epithelial cell line, since they form bona fide hemidesmosomes when plated on glass or plastic. In this study we tested an hypothesis: that this ability is a consequence of an extracellular component produced by the 804G cells. As probes for our study we generated a rabbit antiserum (J18) and monoclonal antibodies against components of urea-solubilized 804G matrix. Antibodies in the J18 serum recognize major lectin-binding polypeptides of 150, 140 and 135 kDa in the 804G matrix. A monoclonal antibody (5C5) that shows reactivity with the 150 and 135 kDa polypeptides in western immunoblots immunoprecipitates all three molecular mass species, indicating that these polypeptides are part of a matrix complex. Moreover, one, at least, of these matrix elements is immunologically related to laminin, since J18 antibodies selected on fusion protein fragments of a newly characterized laminin variant, laminin B2t (Kallunki et al., J. Cell Biol., 119, 679–694, 1992), react with the 140 kDa polypeptide component of the 804G cell matrix. To undertake functional analyses of 804G matrix, cells of the human epidermal carcinoma line SCC12, which do not assemble bona fide hemidesmosomes in vitro, were cultured on 804G matrix for 24 h and then analysed by confocal immunofluorescence and electron microscopy. In SCC12 cells maintained on 804G cell matrix, hemidesmosomal antigens localize in a distinctive leopard spot pattern that mirrors the distribution of 804G matrix elements. Furthermore, ultrastructural analysis reveals that the 804G cell matrix supports the formation of ‘mature’ hemidesmosomes by SCC12 cells. Thus 804G cell matrix is a remarkable tool for hemidesmosome studies and it will now be of great importance to determine the exact composition of the 804G matrix, especially its structural and antigenic relationship to laminins.

1996 ◽  
Vol 74 (6) ◽  
pp. 867-873 ◽  
Author(s):  
Elisabeth Strunck ◽  
Gunter Vollmer

The influence of extracellular matrix (ECM) on expression and function of integrins in carcinogenesis and differentiation is not well understood, but the importance of altered adhesion features for tumor development and progression is obvious. Integrins as versatile molecules are mainly responsible for mediating cell–matrix interactions and transmembrane signal transduction. They are capable of transducing outside-in signals from ECM components or conversely to organize the matrix by inside-out signaling. In the study presented here, we report that the reconstituted basement membrane, Matrigel™, which induces morphological and functional differentiation of the endometrial adenocarcinoma cell line HEC 1B(L), also regulates the expression of various forms of the integrin β4 subunit. Furthermore, we were able to identify full-length isoforms with and without an altered cytoplasmic domain as well as truncated forms. Our findings suggest a regulatory role of integrin β4 isoforms and fragments in the process of in vitro differentiation of HEC 1B(L).Key words: endometrium, tumor cells, differentiation, extracellular matrix, β4-integrin expression.


2020 ◽  
Author(s):  
Philip R. Strack ◽  
Erica J. Brodie ◽  
Hanmiao Zhan ◽  
Verena J. Schuenemann ◽  
Liz J. Valente ◽  
...  

SummaryPolymerase δ interacting protein of 38 kDa (PDIP38) was originally identified in a yeast two hybrid screen as an interacting protein of DNA polymerase delta, more than a decade ago. Since this time several subcellular locations have been reported and hence its function remains controversial. Our current understanding of PDIP38 function has also been hampered by a lack of detailed biochemical or structural analysis of this protein. Here we show, that human PDIP38 is directed to the mitochondrion, where it resides in the matrix compartment, together with its partner protein CLPX. PDIP38 is a bifunctional protein, composed of two conserved domains separated by an α-helical hinge region (or middle domain). The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like β-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain (ZBD) of CLPX. In contrast, the C-terminal (DUF525) domain forms an Immunoglobin-like β-sandwich fold, which contains a highly conserved hydrophobic groove. Based on the physicochemical properties of this groove, we propose that PDIP38 is required for the recognition (and delivery to CLPXP) of proteins bearing specific hydrophobic degrons, potentially located at the termini of the target protein. Significantly, interaction with PDIP38 stabilizes the steady state levels of CLPX in vivo. Consistent with these data, PDIP38 inhibits the LONM-mediated turnover of CLPX in vitro. Collectively, our findings shed new light on the mechanistic and functional significance of PDIP38, indicating that in contrast to its initial identification as a nuclear protein, PIDP38 is a bona fide mitochondrial adaptor protein for the CLPXP protease.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Lowell T. Edgar ◽  
James B. Hoying ◽  
Urs Utzinger ◽  
Clayton J. Underwood ◽  
Laxminarayanan Krishnan ◽  
...  

Angiogenesis is the process by which new blood vessels sprout from existing blood vessels, enabling new vascular elements to be added to an existing vasculature. This review discusses our investigations into the role of cell-matrix mechanics in the mechanical regulation of angiogenesis. The experimental aspects of the research are based on in vitro experiments using an organ culture model of sprouting angiogenesis with the goal of developing new treatments and techniques to either promote or inhibit angiogenic outgrowth, depending on the application. Computational simulations were performed to simulate angiogenic growth coupled to matrix deformation, and live two-photon microscopy was used to obtain insight into the dynamic mechanical interaction between angiogenic neovessels and the extracellular matrix. In these studies, we characterized how angiogenic neovessels remodel the extracellular matrix (ECM) and how properties of the matrix such as density and boundary conditions influence vascular growth and alignment. Angiogenic neovessels extensively deform and remodel the matrix through a combination of applied traction, proteolytic activity, and generation of new cell-matrix adhesions. The angiogenic phenotype within endothelial cells is promoted by ECM deformation and remodeling. Sensitivity analysis using our finite element model of angiogenesis suggests that cell-generated traction during growth is the most important parameter controlling the deformation of the matrix and, therefore, angiogenic growth and remodeling. Live two-photon imaging has also revealed numerous neovessel behaviors during angiogenesis that are poorly understood such as episodic growth/regression, neovessel colocation, and anastomosis. Our research demonstrates that the topology of a resulting vascular network can be manipulated directly by modifying the mechanical interaction between angiogenic neovessels and the matrix.


1991 ◽  
Vol 113 (2) ◽  
pp. 113-119 ◽  
Author(s):  
E. Bell ◽  
M. Rosenberg ◽  
P. Kemp ◽  
R. Gay ◽  
G. D. Green ◽  
...  

Reconstituted Living Skin Equivalent™ (LSE™) is made up of a dermal equivalent (DE) on which keratinocytes are plated where they give rise to a multilayered differentiated epidermis. The dermal equivalent develops through interactions between fibroblasts and collagen fibrils that begin to form after the cell-matrix precursor is cast. The gel that forms as a result of collagen polymerization and fluid trapping is contracted uniformly in all dimensions. By securing it at ends and edges in the mold in which it is cast, the final dimensions, strength and morphology of the forming tissue are altered. The same phenomena are seen in casting tubular tissues for the fabrication of small caliber blood vessel equivalents. The cells of the dermal equivalent are biosynthetically active and enrich the matrix to different degrees with secretory products, depending on how the cells are stimulated and on the presence or absence of an epidermis. Collagen biosynthesis by dermal cells in the DE is sensitive to growth factors, ascorbate concentrations and amino acid pools. Both ascorbate and TGFβ1 increase total collagen biosynthesis at least two-fold by one week after tissue formation. With TGFβ1 present, the capacity of cells in the DE to synthesize collagen increases with time, over a two-week period. If ascorbate (200 μg/ml) is added just after the tissue is cast and daily thereafter, contraction lattice is blocked, and collagen biosynthesis is enhanced relative to contracted controls that had received 200 μg/ml ascorbate once. The increase was nearly an order of magnitude over that of controls and was coordinate with a comparable increase in hyaluronate and sulfated glycosaminoglycan (GAG) production as shown by TCA-precipitable glucosamine in the intercellular matrix of the DE. Both the LSE and the Living Dermal Equivalent™ (LDE™) exhibit complex responses to UV radiation and to various chemicals that are greatly different from responses given by monolayered cells. In general, threshold doses are elevated by one or more orders of magnitude for the tissues as compared with cells in monolayer, with the LSE exhibiting higher thresholds than the DE. The immunogenicity of the human LSE has been tested in vitro. Its cells are shown to be unable to stimulate a response in a mixed lymphocyte reaction (MLR) even after Class II antigens are induced by exposure to cytokines. The basis for the immunologic neutrality of the LSE can be referred to the absence of immune system (IS) cells normally present in skin and to the specific antigenic profiles of nonimmune system (NIS) cells that must be different from those of IS cells and which, even after Class II induction, are not allostimulatory. The generality of immunologic neutrality is an essential consideration in the fabrication of tissue and organ equivalents for grafting. The idea that it can be made a graft property has been formalized in the Neutral Allograft Hypothesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Oana Craciunescu ◽  
Alexandra Gaspar ◽  
Mihaela Trif ◽  
Magdalena Moisei ◽  
Anca Oancea ◽  
...  

Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation andin vitroevaluation of a collagen (Col) matrix embedding a liposomal formulation of chondroitin sulfate (L-CS) for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05), respectively.In vitrocytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation.In vitrodiffusion test indicated that the quantity of released CS was significantly lower (P<0.05) after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.


1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Sign in / Sign up

Export Citation Format

Share Document