Radiolabeled r-Hirudin as a Measure of Thrombin Activity at, or within, the Rabbit Aorta Wall In Vitro and In Vivo

1994 ◽  
Vol 71 (04) ◽  
pp. 499-506 ◽  
Author(s):  
Mark W C Hatton ◽  
Bonnie Ross-Ouellet

SummaryThe behavior of 125I-labeled recombinant hirudin towards the uninjured and de-endothelialized rabbit aorta wall has been studied in vitro and in vivo to determine its usefulness as an indicator of thrombin activity associated with the aorta wall. Thrombin adsorbed to either sulfopropyl-Sephadex or heparin-Sepharose bound >95% of 125I-r-hirudin and the complex remained bound to the matrix. Binding of 125I-r-hirudin to the exposed aorta subendothelium (intima-media) in vitro was increased substantially if the tissue was pre-treated with thrombin; the quantity of l25I-r-hirudin bound to the de-endothelialized intima-media (i.e. balloon-injured in vitro) correlated positively with the quantity of bound 131I-thrombin (p <0.01). Aortas balloon-injured in vivo were measured for thrombin release from, and binding of 125I-r-hirudin to, the de-endothelialized intimal surface in vitro; 125I-r-hirudin binding correlated with the amount of active thrombin released (p <0.001). Uptake of 125I-r-hirudin by the aorta wall in vivo was proportional to the uptake of 131I-fibrinogen (as an indicator of thrombin activity) before and after balloon injury. After 30 min in the circulation, specific 125I-r-hirudin binding to the uninjured and de-endo- thelialized (at 1.5 h after injury) aorta wall was equivalent to 3.4 (± 2.5) and 25.6 (±18.1) fmol of thrombin/cm2 of intima-media, respectively. Possibly, only hirudin-accessible, glycosaminoglycan-bound thrombin is measured in this way.

1994 ◽  
Vol 71 (01) ◽  
pp. 147-153 ◽  
Author(s):  
Siw Frebelius ◽  
Ulf Hedin ◽  
Jesper Swedenborg

SummaryThe thrombogenicity of the vessel wall after endothelial denudation is partly explained by an impaired inhibition of thrombin on the subendothelium. We have previously reported that thrombin coagulant activity can be detected on the vessel wall after balloon injury in vivo. The glycosaminoglycans of the subendothelium differ from those of the endothelium and have a lower catalyzing effect on antithrombin III, but inhibition of thrombin can still be augmented by addition of antithrombin III to the injured vessel surface.In this study the effect of antithrombin III and heparin on thrombin coagulant activity on the vessel wall was studied after in vivo balloon injury of the rabbit aorta using biochemical and immunohistochemical methods and thrombin was analysed after excision of the vessel. Continuous treatment with heparin, lasting until sacrifice of the animal, or treatment with antithrombin III resulted in significant reduction of thrombin coagulant activity on the injured aorta. Heparin given only in conjunction with the injury did not prevent thrombin coagulant activity or deposition of fibrin on the surface.The capacity of the injured vessel wall to inhibit thrombin in vitro was improved on aortic segments obtained from animals receiving antithrombin III but not from those given heparin. It is concluded that treatment with antithrombin III interferes with thrombin appearance on the vessel wall after injury and thereby reduces the risk for thrombosis.


1987 ◽  
Author(s):  
Mark W C Hatton ◽  
Susan Moar ◽  
Mary Richardson

A previous study from this laboratory has identified the susceptibility of the de-endothelialised aorta, particularly the proteoglycan (PG) components of the extracellular matrix (ECM), to proteolytic damage if exposed to plasmin in vitro. To explore the possiblity that this occurs in vivo, a possible association between 125I-plasminogen (PLG) binding to the arterial wall, its activation to plasmin (PLN) and, subsequently, proteolytic damage to the intimal ECM has been studied. Intravenous injection of 125I-PLG in healthy N.Z. white male rabbits showed that PLG associated minimally (<0.01% of circulating PLG/cm2 /ml blood at 1 h) with the thoracic aorta endothelium, measured after Hautchen preparation from 1-cm vessel segments. Trans endothelial passage, measured as 125I-PLG associated with thg subendothelium (intima-media), progressed to 0.015%/cm2 /ml blood at 1 h. In contrast, the process of de-endothelialisation by balloon catheter led to a rapid uptake of bI-PLG by the denuded vessel surface. At saturation (approx. 10 min after injury), 0.7 - 0.8% of circulating PLG/cm2/ml blood was adsorbed by the entire de-endothelialised intima-media: Of the adsorbed PLG, 2-3% was associated with the platelet layer. Uptake was not inhibited by eACA (dose: 200 mg/kg) given i.v. before I-PLG. Adsorbed PLG was not released significantly from segments incubated in MEM containing 4% (w/v) RSA in vitro PLN activity was not detected. Furthermore, assessment of the ECM by transmission electron microscopy, after ruthenium red staining, showed that uptake of PLG by the de-endothelialised vessel in vivo was not associated with obvious damage to the PG components. Supported by the Heart and Stroke Foundation of Ontario.


2001 ◽  
Vol 85 (04) ◽  
pp. 724-729 ◽  
Author(s):  
Paul Eisenberg ◽  
Antonietta Martelli ◽  
Patrizia Orsi ◽  
Daniela Sini ◽  
Paolo Spallarossa ◽  
...  

Summary Background: Procoagulant activity and oxidative stress generated by balloon injury to normal vessels promote the migration of medial smooth muscle cells and their proliferation in the intima. We hypothesised that administering levo N-acetyl-cysteine (NAC) i.v. at the time of injury, and s.c. before and after injury would reduce neointimal formation 4 weeks later and would regulate procoagulant activity in vessels with neointima undergoing ballooning a second time. Methods and Results: at the time of injury rabbits received: NAC, unfractionated heparin (HEP) or both (NAC + HEP). Neointimal thickening at 28 days, calculated as the ratio between the intimal and medial area, was attenuated after NAC, HEP and NAC+HEP by 39%, 30% and 47% respectively when compared to untreated injured animals (CONTROLS) (p 0.05). At 28 days, bound thrombin activity and platelet adhesion 1 h after a repeated balloon injury decreased in animals receiving NAC, HEP and NAC+HEP by 54%, 63% and 64% for thrombin activity (p 0.05 vs CONTROLS), and by 56%, 66% and 75% respectively for 111Indium-platelet deposition (p 0.05 vs CONTROLS). Conclusions: NAC in-vivo was effective in reducing neointimal thickening and procoagulant response after balloon injury.


Cartilage ◽  
2021 ◽  
pp. 194760352110235
Author(s):  
Hongjun Zhang ◽  
Wendi Zheng ◽  
Du Li ◽  
Jia Zheng

Objective miR-146a-5p was found to be significantly upregulated in cartilage tissue of patients with osteoarthritis (OA). NUMB was shown to be involved in the autophagy regulation process of cells. We aimed to learn whether NUMB was involved in the apoptosis or autophagy process of chondrocytes in OA and related with miR-146a-5p. Methods QRT-PCR was used to detect miR-146a-5p level in 22 OA cartilage tissues and 22 controls. The targets of miR-146a-5p were analyzed using software and the luciferase reporter experiment. The apoptosis and autophagy, and related proteins were detected in chondrocytes treated with miR-146a-5p mimic/inhibitor or pcDNA3.1-NUMB/si-NUMB and IL-1β, respectively. In vivo experiment, intra-articular injection of miR-146a-5p antagomir/NC was administered at the knee of OA male mice before and after model construction. Chondrocyte apoptosis and the expression of apoptosis and autophagy-related proteins were also detected. Results miR-146a-5p was highly expressed in knee cartilage tissue of patients with OA, while NUMB was lowly expressed and negatively regulated by miR-146a-5p. Upregulation of miR-146a-5p can promote cell apoptosis and reduce autophagy of human and mouse chondrocytes by modulating the levels of cleaved caspase-3, cleaved PARP, Bax, Beclin 1, ATG5, p62, LC3-I, and LC3-II. Increasing the low level of NUMB reversed the effects of miR-146a-5p on chondrocyte apoptosis and autophagy. Intra-articular injection of miR-146a-5p antagomir can also reverse the effects of miR-146a-5p on the apoptosis and autophagy of knee joint chondrocytes in OA mice. Conclusion Downregulation of miR-146a-5p suppresses the apoptosis and promotes autophagy of chondrocytes by targeting NUMB in vivo and in vitro.


2006 ◽  
Vol 13 (6) ◽  
pp. 671-677 ◽  
Author(s):  
Robert Mabry ◽  
Kathleen Brasky ◽  
Robert Geiger ◽  
Ricardo Carrion ◽  
Gene B. Hubbard ◽  
...  

ABSTRACT Several strategies that target anthrax toxin are being developed as therapies for infection by Bacillus anthracis. Although the action of the tripartite anthrax toxin has been extensively studied in vitro, relatively little is known about the presence of toxins during an infection in vivo. We developed a series of sensitive sandwich enzyme-linked immunosorbent assays (ELISAs) for detection of both the protective antigen (PA) and lethal factor (LF) components of the anthrax exotoxin in serum. The assays utilize as capture agents an engineered high-affinity antibody to PA, a soluble form of the extracellular domain of the anthrax toxin receptor (ANTXR2/CMG2), or PA itself. Sandwich immunoassays were used to detect and quantify PA and LF in animals infected with the Ames or Vollum strains of anthrax spores. PA and LF were detected before and after signs of toxemia were observed, with increasing levels reported in the late stages of the infection. These results represent the detection of free PA and LF by ELISA in the systemic circulation of two animal models exposed to either of the two fully virulent strains of anthrax. Simple anthrax toxin detection ELISAs could prove useful in the evaluation of potential therapies and possibly as a clinical diagnostic to complement other strategies for the rapid identification of B. anthracis infection.


2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Hiroki Yonezawa

Abstract A cell deforms and migrates on the scaffold under mechanical stimuli in vivo. In this study, a cell with division during shear stress stimulation has been observed in vitro. Before and after division, both migration and deformation of each cell were analyzed. To make a Couette-type shear flow, the medium was sandwiched between parallel disks (the lower stationary culture-disc and the upper rotating disk) with a constant gap. The wall shear stress (1.5 Pa &lt; τ &lt; 2 Pa) on the surface of the lower culture plate was controlled by the rotational speed of the upper disc. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. After cultivation without flow for 24 hours for adhesion of the cells to the lower disk, constant τ was applied to the cells in the incubator for 7 days. The behavior of each cell during shear was tracked by time-lapse images observed by an inverted phase contrast microscope placed in the incubator. Experimental results show that each cell tends to divide after higher activities: deformation and migration. The tendency is remarkable at the shear stress of 1.5 Pa.


2016 ◽  
Vol 9 (9) ◽  
pp. 880-886
Author(s):  
Dan Meila ◽  
Katharina Melber ◽  
Dominik Grieb ◽  
Collin Jacobs ◽  
Heinrich Lanfermann ◽  
...  

IntroductionVein of Galen malformation (VGM), a high-flow intracranial arteriovenous shunt, is among the most severe neurovascular diseases in childhood. In many cases untreated children die or survive only severely disabled. Endovascular embolization is the preferred treatment.ObjectiveTo develop a simple fistulous-type VGM phantom model for teaching and training of different endovascular treatment methods and to investigate new treatment options and devices.MethodsAn experimental in vitro pulsatile phantom model was developed imitating a high-flow fistulous-type VGM, which is typical, especially in the neonatal phase. Pressure measurements at different arterial sites were performed before and after closure of the VGM. Closure of the VGM was achieved by coiling using a combined microcatheter-based transvenous and transarterial approach called ‘kissing microcatheter technique’.ResultsThe behaviour of the phantom model in vitro under fluoroscopy and under angiographic runs was extremely similar to that in in vivo conditions in children. The results showed that intra-arterial pressures changed and increased statistically significantly at all measurement sites after embolization, as in human arteriovenous malformation. We also demonstrated different and complementary visualizations of hemodynamics and angioarchitecture by antegrade and retrograde microcatheter injections.ConclusionsOur phantom model behaves like a typical fistulous-type VGM and can be used in vitro for teaching and training and for further research. It offers a new and better understanding of hemodynamics and angioarchitecture in the endovascular management of VGM.


1998 ◽  
Vol 9 (2) ◽  
pp. 421-435 ◽  
Author(s):  
Laura A. Rudolph-Owen ◽  
Paul Cannon ◽  
Lynn M. Matrisian

To examine the role of matrilysin (MAT), an epithelial cell-specific matrix metalloproteinase, in the normal development and function of reproductive tissues, we generated transgenic animals that overexpress MAT in several reproductive organs. Three distinct forms of human MAT (wild-type, active, and inactive) were placed under the control of the murine mammary tumor virus promoter/enhancer. Although wild-type, active, and inactive forms of the human MAT protein could be produced in an in vitro culture system, mutations of the MAT cDNA significantly decreased the efficiency with which the MAT protein was produced in vivo. Therefore, animals carrying the wild-type MAT transgene that expressed high levels of human MAT in vivo were further examined. Mammary glands from female transgenic animals were morphologically normal throughout mammary development, but displayed an increased ability to produce β-casein protein in virgin animals. In addition, beginning at approximately 8 mo of age, the testes of male transgenic animals became disorganized with apparent disintegration of interstitial tissue that normally surrounds the seminiferous tubules. The disruption of testis morphology was concurrent with the onset of infertility. These results suggest that overexpression of the matrix-degrading enzyme MAT alters the integrity of the extracellular matrix and thereby induces cellular differentiation and cellular destruction in a tissue-specific manner.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 566
Author(s):  
Pham Hong Quan ◽  
Iulian Antoniac ◽  
Florin Miculescu ◽  
Aurora Antoniac ◽  
Veronica Manescu (Păltânea) ◽  
...  

Fluoride conversion coatings on Mg present many advantages, among which one can find the reduction of the corrosion rate under “in vivo” or “in vitro” conditions and the promotion of the calcium phosphate deposition. Moreover, the fluoride ions released from MgF2 do not present cytotoxic effects and inhibit the biofilm formation, and thus these treated alloys are very suitable for cardiovascular stents and biodegradable orthopedic implants. In this paper, the biodegradation behavior of four new magnesium biodegradable alloys that have been developed in the laboratory conditions, before and after surface modifications by fluoride conversion (and sandblasting) coatings, are analyzed. We performed structural and surface analysis (XRD, SEM, contact angle) before and after applying different surface treatments. Furthermore, we studied the electrochemical behavior and biodegradation of all experimental samples after immersion test performed in NaCl solution. For a better evaluation, we also used LM and SEM for evaluation of the corroded samples after immersion test. The results showed an improved corrosion resistance for HF treated alloy in the NaCl solution. The chemical composition, uniformity, thickness and stability of the layers generated on the surface of the alloys significantly influence their corrosion behavior. Our study reveals that HF treatment is a beneficial way to improve the biofunctional properties required for the studied magnesium alloys to be used as biomaterials for manufacturing the orthopedic implants.


Sign in / Sign up

Export Citation Format

Share Document