prophase nucleus
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 22 (11) ◽  
pp. 5987
Author(s):  
Atiqa Sajid ◽  
El-Nasir Lalani ◽  
Bo Chen ◽  
Teruo Hashimoto ◽  
Darren K. Griffin ◽  
...  

Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.


2020 ◽  
Vol 133 (22) ◽  
pp. jcs253724
Author(s):  
Miao Tian ◽  
Christiane Agreiter ◽  
Josef Loidl

ABSTRACTIn most eukaryotes, the meiotic chromosomal bouquet (comprising clustered chromosome ends) provides an ordered chromosome arrangement that facilitates pairing and recombination between homologous chromosomes. In the protist Tetrahymena thermophila, the meiotic prophase nucleus stretches enormously, and chromosomes assume a bouquet-like arrangement in which telomeres and centromeres are attached to opposite poles of the nucleus. We have identified and characterized three meiosis-specific genes [meiotic nuclear elongation 1-3 (MELG1-3)] that control nuclear elongation, and centromere and telomere clustering. The Melg proteins interact with cytoskeletal and telomere-associated proteins, and probably repurpose them for reorganizing the meiotic prophase nucleus. A lack of sequence similarity between the Tetrahymena proteins responsible for telomere clustering and bouquet proteins of other organisms suggests that the Tetrahymena bouquet is analogous, rather than homologous, to the conserved eukaryotic bouquet. We also report that centromere clustering is more important than telomere clustering for homologous pairing. Therefore, we speculate that centromere clustering may have been the primordial mechanism for chromosome pairing in early eukaryotes.


2019 ◽  
Author(s):  
Vanessa Nunes ◽  
Margarida Dantas ◽  
Domingos Castro ◽  
Elisa Vitiello ◽  
Irène Wang ◽  
...  

AbstractDuring prophase, centrosomes need to separate and position to correctly assemble the mitotic spindle. This process occurs through the action of molecular motors, cytoskeletal networks and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. Here we show that during prophase the centrosomes-nucleus axis reorients, so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. This centrosomes-nucleus configuration depends on mechanical cues generated by mitotic chromosome condensation on the prophase nucleus. We further show these mechanosensitive cues act through SUN1/2 and NudE+NudEL to enable the polarized loading of Dynein on the NE. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation. We propose that chromosome segregation fidelity depends on the mechanical properties of the prophase nucleus that facilitate spindle assembly by regulating NE-Dynein localization.


2017 ◽  
Vol 3 (7) ◽  
pp. e1602231 ◽  
Author(s):  
Bo Chen ◽  
Mohammed Yusuf ◽  
Teruo Hashimoto ◽  
Ana Katrina Estandarte ◽  
George Thompson ◽  
...  

1999 ◽  
Vol 19 (5) ◽  
pp. 3515-3528 ◽  
Author(s):  
Sandro Parisi ◽  
Michael J. McKay ◽  
Monika Molnar ◽  
M. Anne Thompson ◽  
Peter J. van der Spek ◽  
...  

ABSTRACT Our work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to confer a number of meiotic phenotypes, including strong reduction of recombination frequencies in the central region of chromosome III, absence of linear element polymerization, reduced pairing of homologous chromosomes, reduced sister chromatid cohesion, aberrant chromosome segregation, defects in spore formation, and reduced spore viability. Here we extend the description of recombination reduction to the central regions of chromosomes I and II. We show at the protein level that expression ofrec8 is meiosis specific and that Rec8p localizes to approximately 100 foci per prophase nucleus. Rec8p was present in an unphosphorylated form early in meiotic prophase but was phosphorylated prior to meiosis I, as demonstrated by analysis of the mei4mutant blocked before meiosis I. Evidence for the persistence of Rec8p beyond meiosis I was obtained by analysis of the mutantmes1 blocked before meiosis II. A human gene, which we designate hrec8, showed significant primary sequence similarity to rec8 and was mapped to chromosome 14. High mRNA expression of mouse and human rec8 genes was found only in germ line cells, specifically in testes and, interestingly, in spermatids. hrec8 was also expressed at a low level in the thymus. Sequence similarity and testis-specific expression indicate evolutionarily conserved functions of Rec8p in meiosis. Possible roles of Rec8p in the integration of different meiotic events are discussed.


1998 ◽  
Vol 142 (4) ◽  
pp. 1013-1022 ◽  
Author(s):  
Conly L. Rieder ◽  
Richard W. Cole

When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.


1992 ◽  
Vol 101 (1) ◽  
pp. 93-98 ◽  
Author(s):  
TAKASHI MURATA ◽  
MASAMITSU WADA

The preprophase band (PPB) of microtubules (MTs), which appears at the future site of cytokinesis prior to cell division in higher plant cells, disappears by metaphase. Recent studies have shown that displacement of the endoplasm from the PPB region by centrifugation delays the disappearance of the PPB. To study the role of the endoplasm in the cell cycle-specific disruption of the PPB, the filamentous protonemal cells of the fern Adiantum capilius-veneris L. were centrifuged twice so that the first centrifugation displaced the endoplasm from the site of the PPB and the second returned it to its original location. The endoplasm, including the nucleus of various stages of mitosis, could be returned by the second centrifugation to the original region of the PPB, which persists during mitosis in the centrifuged cells. When endoplasm with a prophase nucleus was returned to its original location, the PPB was not disrupted. When endoplasm with a prometa-phase telophase nucleus was similarly returned, the PPB was disrupted within 10 min of termination of centrifugation. In protonemal cells of Adiantum, a second PPB is often formed near the displaced nucleus after the first centrifugation. In cells in which the endoplasm was considered to have been returned to its original location at the prophase/prometaphase transition, the second PPB did not disappear even though the initial PPB was disrupted by the endoplasm. These results suggest that cell cycle-specific disruption of the PPB is regulated by some factor(s) in the endoplasm, which appears at prometaphase, i.e. the stage at which the PPB is disrupted in non-centrifuged cells.


1988 ◽  
Vol 91 (1) ◽  
pp. 127-137
Author(s):  
C. H. BUSBY ◽  
B.E. S. GUNNING

Evidence presented in the accompanying paper that plastids function as microtubule (MT)-organizing centres for development of the quadripolar cytoskeleton of pre-meiotic spore mother cells (SMCs) in the moss Funaria hygrometrica is complemented here by observations on the MT system in these cells. Early in meiotic prophase numerous MTs align progressively along the two plastids as they elongate. Concomitant with (and perhaps causal for) plastid rotation, new MT arrays grow from each tip of each plastid to both tips of the other plastid. The ‘along-plastid’ and ‘between-plastid’ arrays ultimately form the edges of a tetrahedron, enclosing the prophase nucleus. MT breakdown at the centre of each edge leaves four cones of MTs, one emanating from each vertex, located at the plastid tips. These partially fuse in between-plastid pairs to give a twisted spindle with broad knife-edge poles oriented at right angles to one another, i.e. a condensed form of the quadripolar precursor. The twist causes the metaphase plate and the subsequent phragmoplast and organelle band to be saddle-shaped, and the daughter nuclei to be elongated perpendicular to one another along the two knife edges. The tetrahedral array returns during interkinesis and again breaks down into four cones of MTs centred on the plastid tips; these, however, now become individual half spindles for the two perpendicularly arranged second division spindles. When meiosis is completed the four haploid nuclei thus come to lie at the vertices of a tetrahedron that was established by MT-mediated plastid positioning during meiotic prophase. The tetrahedral cage of MTs precedes meiosis yet predicts the planes of division, and in these two respects it is the meiotic counterpart of the preprophase band of MTs, which develops before mitosis in most higher plant cells.


1983 ◽  
Vol 25 (5) ◽  
pp. 437-445 ◽  
Author(s):  
D. Davidson ◽  
E. Pertens ◽  
J.-P. Zhao

Roots of Zea mays L., Secale cereale L., Vicia faba, L., Allium cepa L., and Hordeum vulgare L. were treated with colchicine. C-metaphases were observed in cells which had chromosomes present in two distinct groups, not the typical single group. Chromosome distribution into two groups was not followed by chromatid segregation: instead, the chromosomes underwent restitution and binucleate-interphase cells were formed. The distribution of chromosomes into two groups is functionally equivalent to chromosome nondisjunction. In some cases, the two groups contained different numbers of chromosomes; these gave rise to aneuploid nuclei. The results support the view that the pattern of chromosome distribution into two groups is not random; it may reflect chromosome position in the interphase or prophase nucleus. The results are related to (i) the formation of genotypic and phenotypic mosaics produced by treatment with other microtubule inhibiting drugs or in response to cell division mutants and (ii) the spatial distribution of chromosomes within the nucleus.


Sign in / Sign up

Export Citation Format

Share Document