Contributions of extracellular and intracellular domains of full length and chimeric cadherin molecules to junction assembly in epithelial cells

1998 ◽  
Vol 111 (9) ◽  
pp. 1305-1318 ◽  
Author(s):  
S.M. Norvell ◽  
K.J. Green

The integrity of cell-cell junctions in epithelial cells depends on functional interactions of both extracellular and intracellular domains of cadherins with other junction proteins. To examine the roles of the different domains of E-cadherin and desmoglein in epithelial junctions, we stably expressed full length desmoglein 1 and chimeras of E-cadherin and desmoglein 1 in A431 epithelial cells. Full length desmoglein 1 was able to incorporate into or disrupt endogenous desmosomes depending on expression level. Each of the chimeric cadherin molecules exhibited distinct localization patterns at the cell surface. A chimera of the desmoglein 1 extracellular domain and the E-cadherin intracellular domain was distributed diffusely at the cell surface while the reverse chimera, comprising the E-cadherin extracellular domain and the desmoglein 1 intracellular domain, localized in large, sometimes contiguous patches at cell-cell interfaces. Nevertheless, both constructs disrupted desmosome assembly. Expression of constructs containing the desmoglein 1 cytoplasmic domain resulted in approximately a 3-fold decrease in E-cadherin bound to plakoglobin and a 5- to 10-fold reduction in the steady-state levels of the endogenous desmosomal cadherins, desmoglein 2 and desmocollin 2, possibly contributing to the dominant negative effect of the desmoglein 1 tail. In addition, biochemical analysis of protein complexes in the stable lines revealed novel in vivo protein interactions. Complexes containing beta-catenin and desmoglein 1 were identified in cells expressing constructs containing the desmoglein 1 tail. Furthermore, interactions were identified between endogenous E-cadherin and the chimera containing the E-cadherin extracellular domain and the desmoglein 1 intracellular domain providing in vivo evidence for previously predicted lateral interactions of E-cadherin extracellular domains.

1998 ◽  
Vol 9 (11) ◽  
pp. 3161-3177 ◽  
Author(s):  
Peter A. Piepenhagen ◽  
W. James Nelson

Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.


2017 ◽  
Author(s):  
Hyung-Seok Kim ◽  
Autumn McKnite ◽  
Yuanyuan Xie ◽  
Jan L. Christian

AbstractToll-like receptor 4 interactor with leucine-rich repeats (Tril) is a transmembrane protein that functions as a coreceptor for Toll-like receptors (Tlrs) to mediate innate immune responses in the adult brain. Tril also triggers degradation of the Bmp inhibitor, Smad7, during early embryonic development to allow for normal blood formation. Tril most likely plays additional, yet to be discovered, roles during embryogenesis. In the current studies, we performed a structure-function analysis, which indicated that the extracellular domain, including the fibronectin type III (FN) domain, and the intracellular domain of Tril are required to trigger Smad7 degradation in the early Xenopus embryo. Furthermore, we found that a Tril deletion mutant lacking the FN domain (TrilΔFN) can dominantly inhibit signaling by endogenous Tril when overexpressed in vivo. This finding raises the intriguing possibility that the FN domain functions to bind endogenous Tril/Tlr4 ligands, perhaps including extracellular matrix molecules. We also show that Tril normally cycles between the cell surface and endosomes, and that the Tril extracellular domain is required to retain Tril at the cell surface, while the intracellular domain is required for Tril internalization in Xenopus ectodermal explants. Using a CHO cell aggregation assay, we further show that, unlike other transmembrane proteins that contain leucine rich repeats in the extracellular domain, Tril is not sufficient to mediate homophilic adhesion. Our findings identify TrilΔFN as a valuable tool that can be used to block the function of endogenous Tril in vivo in order to discover additional roles during embryonic development.


1996 ◽  
Vol 7 (4) ◽  
pp. 565-577 ◽  
Author(s):  
J Wesseling ◽  
S W van der Valk ◽  
J Hilkens

Episialin (MUC1, PEM, EMA, CA15-3 antigen) is a sialylated, membrane-associated glycoprotein with an extended mucin-like ectodomain. This domain mainly consists of 30-90 homologous 20-amino acid repeats that are rich in O-glycosylation sites (serines and threonines). It is likely that this part forms a polyproline beta-turn helix. As a result, the ectodomain can protrude more than 200 nm above the cell surface, whereas most cell surface molecules do not exceed a length of 35 nm. Normally, episialin is present at the apical side of glandular epithelial cells. On carcinoma cells, however, it can be strongly overexpressed and it is often present over the entire cell surface. We have previously shown that episialin, if it is interspersed between adhesion molecules, nonspecifically reduces cell-cell and cell-extracellular matrix interactions in vitro and in vivo, presumably by steric hindrance caused by the extreme length and high density of the episialin molecules at the cell surface. To analyze the molecular mechanism for this anti-adhesion effect in more detail, we have now deleted an increasing number of repeats in the episialin cDNA and transfected the resulting mutants into murine L929 cells expressing the homophilic adhesion molecule E-cadherin. Here we show that the length of episialin is the dominant factor that determines the inhibition of E-cadherin-mediated cell-cell interactions. For the anti-adhesive effect mediated by the full length episialin, charge repulsion by negatively charged sialylated O-linked glycans is far less important.


2017 ◽  
Vol 28 (22) ◽  
pp. 2945-2957 ◽  
Author(s):  
Fabian E. Ortega ◽  
Michelle Rengarajan ◽  
Natalie Chavez ◽  
Prathima Radhakrishnan ◽  
Martijn Gloerich ◽  
...  

The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required.


1994 ◽  
Vol 125 (2) ◽  
pp. 313-320 ◽  
Author(s):  
T Crepaldi ◽  
A L Pollack ◽  
M Prat ◽  
A Zborek ◽  
K Mostov ◽  
...  

Scatter Factor, also known as Hepatocyte Growth Factor (SF/HGF), has pleiotropic functions including direct control of cell-cell and cell-substrate adhesion in epithelia. The subcellular localization of the SF/HGF receptor is controversial. In this work, the cell surface distribution of the SF/HGF receptor was studied in vivo in epithelial tissues and in vitro in polarized MDCK monolayers. A panel of monoclonal antibodies against the beta chain of the SF/HGF receptor stained the basolateral but not the apical surface of epithelia lining the lumen of human organs. Radiolabeled or fluorescent-tagged anti-receptor antibodies selectively bound the basolateral cell surface of MDCK cells, which form a polarized monolayer sealed by intercellular junctions, when grown on polycarbonate filters in a two-chamber culture system. The receptor was concentrated around the cell-cell contact zone, showing a distribution pattern overlapping with that of the cell adhesion molecule E-cadherin. The basolateral localization of the SF/HGF receptor was confirmed by immunoprecipitation after domain selective cell surface biotinylation. When cells were fully polarized the SF/HGF receptor became resistant to non-ionic detergents, indicating interaction with insoluble component(s). In pulse-chase labeling and surface biotinylation experiments, the newly synthesized receptor was found exclusively at the basolateral surface. We conclude that the SF/HGF receptor is selectively exposed at the basolateral plasma membrane domain of polarized epithelial cells and is targeted after synthesis to that surface by direct delivery from the trans-Golgi network.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

1992 ◽  
Vol 116 (4) ◽  
pp. 889-899 ◽  
Author(s):  
D A Wollner ◽  
K A Krzeminski ◽  
W J Nelson

The development of polarized epithelial cells from unpolarized precursor cells follows induction of cell-cell contacts and requires resorting of proteins into different membrane domains. We show that in MDCK cells the distributions of two membrane proteins, Dg-1 and E-cadherin, become restricted to the basal-lateral membrane domain within 8 h of cell-cell contact. During this time, however, 60-80% of newly synthesized Dg-1 and E-cadherin is delivered directly to the forming apical membrane and then rapidly removed, while the remainder is delivered to the basal-lateral membrane and has a longer residence time. Direct delivery of greater than 95% of these proteins from the Golgi complex to the basal-lateral membrane occurs greater than 48 h later. In contrast, we show that two apical proteins are efficiently delivered and restricted to the apical cell surface within 2 h after cell-cell contact. These results provide insight into mechanisms involved in the development of epithelial cell surface polarity, and the establishment of protein sorting pathways in polarized cells.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2007 ◽  
Vol 178 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Lene N. Nejsum ◽  
W. James Nelson

Mechanisms involved in maintaining plasma membrane domains in fully polarized epithelial cells are known, but when and how directed protein sorting and trafficking occur to initiate cell surface polarity are not. We tested whether establishment of the basolateral membrane domain and E-cadherin–mediated epithelial cell–cell adhesion are mechanistically linked. We show that the basolateral membrane aquaporin (AQP)-3, but not the equivalent apical membrane AQP5, is delivered in post-Golgi structures directly to forming cell–cell contacts where it co-accumulates precisely with E-cadherin. Functional disruption of individual components of a putative lateral targeting patch (e.g., microtubules, the exocyst, and soluble N-ethylmaleimide–sensitive factor attachment protein receptors) did not inhibit cell–cell adhesion or colocalization of the other components with E-cadherin, but each blocked AQP3 delivery to forming cell–cell contacts. Thus, components of the lateral targeting patch localize independently of each other to cell–cell contacts but collectively function as a holocomplex to specify basolateral vesicle delivery to nascent cell–cell contacts and immediately initiate cell surface polarity.


Sign in / Sign up

Export Citation Format

Share Document