FYVE-finger proteins--effectors of an inositol lipid

1999 ◽  
Vol 112 (23) ◽  
pp. 4175-4183 ◽  
Author(s):  
H. Stenmark ◽  
R. Aasland

The binding of cytosolic proteins to specific intracellular membranes containing phosphorylated derivatives of phosphatidylinositol (PtdIns) is a common theme in vital cellular processes, such as cytoskeletal function, receptor signalling and membrane trafficking. Recently, several potential effectors of the phosphoinositide 3-kinase product PtdIns 3-phosphate (PtdIns(3)P) have emerged through the observation that a conserved zinc-finger-like domain, the FYVE-finger, binds specifically to this lipid. Here we review current knowledge about the structural basis for the FYVE-PtdIns(3)P interaction, its role in membrane recruitment of proteins and the functions of FYVE-finger proteins in membrane trafficking and other cellular processes.

2019 ◽  
pp. 147-160 ◽  
Author(s):  
M. Alblova ◽  
A. Smidova ◽  
D. Kalabova ◽  
D. Lentini Santo ◽  
T. Obsil ◽  
...  

Neutral trehalase 1 (Nth1) from Saccharomyces cerevisiae catalyzes disaccharide trehalose hydrolysis and helps yeast to survive adverse conditions, such as heat shock, starvation or oxidative stress. 14-3-3 proteins, master regulators of hundreds of partner proteins, participate in many key cellular processes. Nth1 is activated by phosphorylation followed by 14-3-3 protein (Bmh) binding. The activation mechanism is also potentiated by Ca(2+) binding within the EF-hand-like motif. This review summarizes the current knowledge about trehalases and the molecular and structural basis of Nth1 activation. The crystal structure of fully active Nth1 bound to 14-3-3 protein provided the first high-resolution view of a trehalase from a eukaryotic organism and showed 14-3-3 proteins as structural modulators and allosteric effectors of multi-domain binding partners.


2001 ◽  
Vol 355 (2) ◽  
pp. 249-258 ◽  
Author(s):  
David J. GILLOOLY ◽  
Anne SIMONSEN ◽  
Harald STENMARK

PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling.


2021 ◽  
Vol 7 (13) ◽  
pp. eabf8598 ◽  
Author(s):  
Natalya Leneva ◽  
Oleksiy Kovtun ◽  
Dustin R. Morado ◽  
John A. G. Briggs ◽  
David J. Owen

Retromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signaling, immunity, neuroprotection, and virus infection. The retromer core (VPS26/VPS29/VPS35) is present on cargo-transporting, tubular carriers along with a range of sorting nexins. Here, we elucidate the structural basis of membrane tubulation and coupled cargo recognition by metazoan and fungal retromer coats assembled with the non–Bin1/Amphiphysin/Rvs (BAR) sorting nexin SNX3 using cryo–electron tomography. The retromer core retains its arched, scaffolding structure but changes its mode of membrane recruitment when assembled with different SNX adaptors, allowing cargo recognition at subunit interfaces. Thus, membrane bending and cargo incorporation can be modulated to allow retromer to traffic cargoes along different cellular transport routes.


2011 ◽  
Vol 195 (1) ◽  
pp. 7-17 ◽  
Author(s):  
Cat M. Haglund ◽  
Matthew D. Welch

Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.


2005 ◽  
Vol 33 (4) ◽  
pp. 652-656 ◽  
Author(s):  
B.R. Ali ◽  
M.C. Seabra

Rab proteins are members of the superfamily of Ras-like small GTPases and are involved in several cellular processes relating to membrane trafficking and organelle mobility throughout the cell. Like other small GTPases, Rab proteins are initially synthesized as soluble proteins and for membrane attachment they require the addition of lipid moiety(ies) to specific residues of their polypeptide chain. Despite their well-documented roles in regulating cellular trafficking, Rab proteins own trafficking is still poorly understood. We still need to elucidate the molecular mechanisms of their recruitment to cellular membranes and the structural determinants for their specific cellular localization. Recent results indicate that Rab cellular targeting might be Rab-dependent, and this paper briefly reviews our current knowledge of this process.


2020 ◽  
Author(s):  
Natalya Leneva ◽  
Oleksiy Kovtun ◽  
Dustin R. Morado ◽  
John A. G. Briggs ◽  
David J. Owen

AbstractRetromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signalling, immunity, neuroprotection and virus infection. To function in different trafficking routes, retromer core (VPS26/VPS29/VPS35) assembles with a range of sorting nexins to generate tubular carriers and incorporate assorted cargoes. We elucidate the structural basis of membrane remodelling and coupled cargo recognition by assembling metazoan and fungal retromer core trimers on cargo-containing membranes with sorting nexin adaptor SNX3 and determining their structures using cryo-electron tomography. Assembly leads to formation of tubular carriers in the absence of canonical membrane curvature drivers. Interfaces in the retromer coat provide a structural explanation for Parkinson’s disease-linked mutations. We demonstrate that retromer core trimer forms an invariant, evolutionarily-conserved scaffold that can incorporate different auxiliary membrane adaptors by changing its mode of membrane recruitment, so modulating membrane bending and cargo incorporation and thereby allowing retromer to traffic assorted cargoes along different cellular transport routes.


Author(s):  
Nicole A. Lynn ◽  
Emily Martinez ◽  
Hieu Nguyen ◽  
Jorge Z. Torres

The katanin family of microtubule-severing enzymes is critical for cytoskeletal rearrangements that affect key cellular processes like division, migration, signaling, and homeostasis. In humans, aberrant expression, or dysfunction of the katanins, is linked to developmental, proliferative, and neurodegenerative disorders. Here, we review current knowledge on the mammalian family of katanins, including an overview of evolutionary conservation, functional domain organization, and the mechanisms that regulate katanin activity. We assess the function of katanins in dividing and non-dividing cells and how their dysregulation promotes impaired ciliary signaling and defects in developmental programs (corticogenesis, gametogenesis, and neurodevelopment) and contributes to neurodegeneration and cancer. We conclude with perspectives on future katanin research that will advance our understanding of this exciting and dynamic class of disease-associated enzymes.


2018 ◽  
Vol 72 (1) ◽  
pp. 209-230 ◽  
Author(s):  
Jesús Blázquez ◽  
Jerónimo Rodríguez-Beltrán ◽  
Ivan Matic

By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 542
Author(s):  
Eduardo I. Tognarelli ◽  
Antonia Reyes ◽  
Nicolás Corrales ◽  
Leandro J. Carreño ◽  
Susan M. Bueno ◽  
...  

Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.


Sign in / Sign up

Export Citation Format

Share Document