Evidence for novel cell cycle checkpoints in trypanosomes: kinetoplast segregation and cytokinesis in the absence of mitosis

1999 ◽  
Vol 112 (24) ◽  
pp. 4641-4650 ◽  
Author(s):  
A. Ploubidou ◽  
D.R. Robinson ◽  
R.C. Docherty ◽  
E.O. Ogbadoyi ◽  
K. Gull

Trypanosoma brucei has a single nucleus and a single kinetoplast (the mitochondrial genome). Each of these organelles has a distinct S phase, which is followed by a segregation period, prior to cell division. The segregation of the two genomes takes place in a specific temporal order by interaction with microtubule-based structures, the spindle for nuclear DNA and the flagellum basal bodies for the kinetoplast DNA. We used rhizoxin, the anti-microtubule agent and polymerisation inhibitor, or the nuclear DNA synthesis inhibitor aphidicolin, to interfere with cell cycle events in order to study how such events are co-ordinated. We show that T. brucei cytokinesis is not dependent upon either mitosis or nuclear DNA synthesis, suggesting that there are novel cell cycle checkpoints in this organism. Moreover, use of monoclonal antibodies to reveal cytoplasmic events such as basal body duplication shows that some aphidicolin treated cells appear to be in G(1) phase (1K1N) but have activated some cytoplasmic events characteristic of G(2) phase (basal body segregation). We discuss a possible dominant role in trypanosomes for kinetoplast/basal body segregation in control of later cell cycle events such as cytokinesis

We have analysed the timing and order of events occurring within the cell division cycle of Trypanosoma brucei . Cells in the earliest stages of the cell cycle possess a single copy of three major organelles: the nucleus, the kinetoplast and the flagellum. The first indication of progress through the cell cycle is the elongation of the pro-basal body lying adjacent to the mature basal body subtending the flagellum. This newly elongated basal body occupies a posterior position within the cell when it initiates growth of the new daughter flagellum. Genesis of two new pro-basal bodies occurs only after growth of the new daughter flagellum has been initiated. Extension of the new flagellum, together with the paraflagellar rod, then continues throughout a major portion of the cell cycle. During this period of flagellum elongation, kinetoplast division occurs and the two kinetoplasts, together with the two flagellar basal bodies, then move apart within the cell. Mitosis is then initiated and a complex pattern of organelle positions is achieved whereby a division plane runs longitudinally through the cell such that each daughter ultimately receives a single nucleus, kinetoplast and flagellum. These events have been described from observations of whole cytoskeletons by transmission electron microscopy together with detection of particular organelles by fluorescence microscopy. The order and timing of events within the cell cycle has been derived from analyses of the proportion of a given cell type occurring within an exponentially growing culture.


Reproduction ◽  
2003 ◽  
pp. 661-668 ◽  
Author(s):  
J Blanco-Rodriguez ◽  
C Martinez-Garcia ◽  
A Porras

In the seminiferous epithelium, both DNA synthesis and apoptosis occur at equivalent stages in various species, with apoptosis taking place mainly at the same stages as DNA replication in the second, third and fourth spermatogonial generations. As preservation of the cellular associations found at these stages may have some functional significance, it is important to determine whether there is a correlation between these cellular events. In this study, pairs of immunoperoxidase-stained adjacent testis sections from rats, mice, rabbits and cats in which either bromodeoxyuridine incorporated into the newly synthesized DNA strand (BrdU labelling) or DNA 3' end labelling of the apoptotic DNA fragments (TUNEL assay) were detected were compared. In addition, both events were analysed in double-labelled sections. These two methods revealed a clear correlation between the occurrence of DNA replication in the second to fourth generations of spermatogonia and most physiological apoptosis taking place in both spermatogonia and spermatocytes in the three different mammalian orders (Rodentia, Lagomorpha and Carnivora). This correlation may result from the synchronization of mitotic spermatogonial and meiotic spermatocyte cell cycle checkpoints operating at these stages.


1990 ◽  
Vol 95 (1) ◽  
pp. 49-57 ◽  
Author(s):  
R. Woodward ◽  
K. Gull

We have used immunofluorescent detection of 5-bromo-2-deoxyuridine-substituted DNA in order to determine the timing of initiation and the duration of nuclear and kinetoplast S-phases within the procyclic stage of the Trypanosoma brucei cell cycle. Both nuclear and kinetoplast S-phases were shown to be periodic, occupying 0.18 and 0.12 of the unit cell cycle, respectively. In addition, initiation of both of these S-phases were in approximate synchrony, differing by only 0.03 of the unit cell cycle. We have also used a monoclonal antibody that recognises the basal bodies of T. brucei in order to visualise cells possessing a new pro-basal body and hence determine the time of pro-basal body formation within the cell cycle. Pro-basal body formation occurred within a few minutes of the initiation of nuclear S-phase, at 0.41 of the unit cell cycle. This provides detection of the earliest known cell cycle event in T. brucei at the level of the light microscope. Cell cycle events including initiation of nuclear and kinetoplast DNA replication and pro-basal body formation may be strictly coordinated in T. brucei in order to maintain the precise single-mitochondrion (kinetoplast), singleflagellum status of the interphase cell.


1970 ◽  
Vol 25 (9) ◽  
pp. 1047-1052 ◽  
Author(s):  
G. Czihak ◽  
E. Pohl

Incorporation rate of thymidine into nuclear DNA of cleaving sea urchin eggs is independent of the incubation time before fertilization. The incorporation rate into the single nucleus was found to be higher in later cleavage stages than immediately after fertilization. A constant value is reached after a certain time. Thymidine uptake is considered to be dependent on a transport mechanism starting with fertilization.


1973 ◽  
Vol 58 (2) ◽  
pp. 340-345 ◽  
Author(s):  
Kenneth D. Ley ◽  
Marilyn M. Murphy

Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.


Zygote ◽  
1997 ◽  
Vol 5 (2) ◽  
pp. 153-175 ◽  
Author(s):  
Richard Ikegami ◽  
Alma K. Rivera-Bennetts ◽  
Deborah L. Brooker ◽  
Thomas D. Yager

SummaryWe address the developmental activation, in the zebrafish embryo, of intrinsic cell-cycle checkpoints which monitor the DNA replication process and progression through the cell cycle. Eukaryotic DNA replication is probably carried out by a multiprotein complex containing numerous enzymes and accessory factors that act in concert to effect processive DNA synthesis (Applegren, N. et al. (1995) J. Cell. Biochem. 59, 91–107). We have exposed early zebrafish embryos to three chemical agents which are predicted to specifically inhibit the DNA polymerase α, topoisomerase I and topoisomerase II components of the DNA replication complex. We present four findings: (1) Before mid-blastula transition (MBT) an inhibition of DNA synthesis does not block cells from attempting to proceed through mitosis, implying the lack of functional checkpoints. (2) After MBT, the embryo displays two distinct modes of intrinsic checkpoint operation. One mode is a rapid and complete stop of cell division, and the other is an ‘adaptive’ response in which the cell cycle continues to operate, perhaps in a ‘repair’ mode, to generate daughter nuclei with few visible defects. (3) The embryo does not display a maximal capability for the ‘adaptive’ response until several hours after MBT, which is consistent with a slow rranscriptional control mechanism for checkpoint activation. (4) The slow activation of checkpoints at MBT provides a window of time during which inhibitors of DNA synthesis will induce cytogenetic lesions without killing the embryo. This could be useful in the design of a deletion-mutagenesis strategy.


2021 ◽  
Author(s):  
Huaizhou Jiang ◽  
Veronica Garcia ◽  
Jennifer Abla Yanum ◽  
Joonyong Lee ◽  
Guoli Dai

Following partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators, and dysregulated activation patterns of mitogenic signaling molecules c-Met and EGFR. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, and eventually determines the redox state of regenerated livers.


2018 ◽  
Author(s):  
Hui Xiao Chao ◽  
Randy I. Fakhreddin ◽  
Hristo K. Shimerov ◽  
Rashmi J. Kumar ◽  
Gaorav P. Gupta ◽  
...  

The cell cycle is canonically described as a series of 4 phases: G1 (gap phase 1), S (DNA synthesis), G2 (gap phase 2), and M (mitosis). Various models have been proposed to describe the durations of each phase, including a two-state model with fixed S-G2-M duration and random G1 duration1,2; a “stretched” model in which phase durations are proportional3; and an inheritance model in which sister cells show correlated phase durations2,4. A fundamental challenge is to understand the quantitative laws that govern cell-cycle progression and to reconcile the evidence supporting these different models. Here, we used time-lapse fluorescence microscopy to quantify the durations of G1, S, G2, and M phases for thousands of individual cells from three human cell lines. We found no evidence of correlation between any pair of phase durations. Instead, each phase followed an Erlang distribution with a characteristic rate and number of steps. These observations suggest that each cell cycle phase is memoryless with respect to previous phase durations. We challenged this model by perturbing the durations of specific phases through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Phase durations remained uncoupled in individual cells despite large changes in durations in cell populations. To explain this behavior, we propose a mathematical model in which the independence of cell-cycle phase durations arises from a large number of molecular factors that each exerts a minor influence on the rate of cell-cycle progression. The model predicts that it is possible to force correlations between phases by making large perturbations to a single factor that contributes to more than one phase duration, which we confirmed experimentally by inhibiting cyclin-dependent kinase 2 (CDK2). We further report that phases can show coupling under certain dysfunctional states such as in a transformed cell line with defective cell cycle checkpoints. This quantitative model of cell cycle progression explains the paradoxical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


1985 ◽  
Vol 101 (5) ◽  
pp. 1903-1912 ◽  
Author(s):  
R L Wright ◽  
J Salisbury ◽  
J W Jarvik

We have isolated a nucleus-basal body complex from Chlamydomonas reinhardtii. The complex is strongly immunoreactive to an antibody generated against a major protein constituent of isolated Tetraselmis striata flagellar roots (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, J. Cell Biol., 99:962-970). Electrophoretic and immunoelectrophoretic analysis indicates that, like the Tetraselmis protein, the Chlamydomonas antigen consists of two acidic isoforms of approximately 20 kD. Indirect immunofluorescent staining of nucleus-basal body complexes reveals two major fibers in the connector region, one between each basal body and the nucleus. The nucleus is also strongly immunoreactive, with staining radiating around much of the nucleus from a region of greatest concentration at the connector pole. Calcium treatment causes shortening of the connector fibers and also movement of nuclear DNA towards the connector pole. Electron microscopic observation of negatively stained nucleus-basal body complexes reveals a cluster of approximately 6-nm filaments, suspected to represent the connector, between the basal bodies and nuclei. A mutant with a variable number of flagella, vfl-2-220, is defective with respect to the nucleus-basal body association. This observation encourages us to speculate that the nucleus-basal body union is important for accurate basal body localization within the cell and/or for accurate segregation of parental and daughter basal bodies at cell division. A physical association between nuclei and basal bodies or centrioles has been observed in a variety of algal, protozoan, and metazoan cells, although the nature of the association, in terms of both structure and function, has been obscure. We believe it likely that fibrous connectors homologous to those described here for Chlamydomonas are general features of centriole-bearing eucaryotic cells.


1975 ◽  
Vol 65 (3) ◽  
pp. 503-512 ◽  
Author(s):  
D L Nanney

Most naked basal bodies visualized in protargol stains on the surface of Tetrahymena are new basal bodies which have not yet developed cilia. The rarity of short cilia is explained by the rapid development of the ciliary shaft once it begins to grow. The high frequency of naked basal bodies (about 50 percent) in log cultures indicates that the interval between assembly of the basal body and the initiation of the cilium is long, approximately a full cell cycle. Naked basal bodies are more frequent in the mid and posterior parts of the cell and two or more naked basal bodies may be associated with one ciliated basal body in these regions. Daughter cells produced at division are apparently asymmetric with respect to their endowment of new and old organelles.


Sign in / Sign up

Export Citation Format

Share Document