Phospholipase A(2) and its products are involved in the purinergic receptor-mediated translocation of protein kinase C in CHO-K1 cells

2000 ◽  
Vol 113 (8) ◽  
pp. 1335-1343
Author(s):  
Y. Shirai ◽  
K. Kashiwagi ◽  
N. Sakai ◽  
N. Saito

The signal transduction involved in the purinergic stimuli-induced activation of protein kinase C (PKC) in CHO-K1 cells was investigated. Purinergic stimuli such as adenosine triphosphate and uridine triphosphate induced a transient translocation of PKC epsilon, gamma, and delta from the cytoplasm to the plasma membrane. These translocations were blocked by an inhibitor of phosphatidylinositol-specific phospholipase C (PLC), but not by an inhibitor of phosphatidylcholine-specific PLC. A diacylglycerol (DAG) analogue also induced reversible translocations of PKC gamma, epsilon, and delta from the cytoplasm to the plasma membrane, while the calcium ionophore A23187 caused a similar translocation of only the gamma subtype. These results confirm that the hydrolysis of phosphatidylinositol-2-phosphate by PLC and the subsequent generation of DAG and increase in Ca(2+)are involved in the purinergic stimuli-induced translocation of PKC. A DAG antagonist, 1-o-hexadecyl-2-o-acetyl-glycerol, blocked the DAG analogue-induced translocations of all PKC subtypes tested but failed to inhibit the purinergic stimuli-induced translocations of PKC epsilon and gamma. The DAG antagonist could not block the ATP- and UTP-induced translocation of PKC epsilon even in the absence of extracellular Ca(2+). Co-application of the DAG antagonist and a phospholipase A(2) (PLA(2)) inhibitor such as aristolochic acid, arachidonyltrifluoromethyl ketone, or bromoenol lactone inhibited the purinergic receptor-mediated translocation of PKC epsilon although each PLA(2) inhibitor alone did not block the translocation. In contrast to the epsilon subtype, ATP-induced translocation of PKC gamma was observed in the presence of both the PLA(2) inhibitor and the DAG antagonist. However, it is noteworthy that re-translocation of PKC gamma was hastened by the PLA(2) inhibitor. Furthermore products of PLA(2), such as lysophospholipids and fatty acids, induced the translocation of PKC gamma and epsilon in a dose dependent manner, but not delta. These results indicate that, in addition to PLC and DAG, PLA(2) and its products are involved in the purinergic stimuli-induced translocation of PKC epsilon and gamma in CHO-K1 cells. Each subtype of PKC in CHO-K1 cell is individually activated in response to a purinergic stimulation.

2011 ◽  
Vol 22 (24) ◽  
pp. 4908-4917 ◽  
Author(s):  
Deepti Gadi ◽  
Alice Wagenknecht-Wiesner ◽  
David Holowka ◽  
Barbara Baird

Protein kinase C β (PKCβ) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca2+concentrations and oscillatory association of PKCβ–enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCβ. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca2+mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca2+entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.


1994 ◽  
Vol 131 (5) ◽  
pp. 510-515 ◽  
Author(s):  
Osamu Kozawa ◽  
Haruhiko Tokuda ◽  
Atsushi Suzuki ◽  
Jun Kotoyori ◽  
Yoshiaki Ito ◽  
...  

Kozawa O, Tokuda H, Suzuki A, Kotoyori J, Ito Y, Oiso Y. Effect of glucocorticoid on prostaglandin F2α-induced prostaglandin E2 synthesis in osteoblast-like cells: inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2. Eur J Endocrinol 1994;131:510–15. ISSN 0804–4643 It is well known that osteoporosis is a common complication of patients with glucocorticoid excess. We showed previously that prostaglandin (PG) F2α stimulates the synthesis of PGE2, a potent bone resorbing agent, and that the activation of protein kinase C amplifies the PGF2α-induced PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like MC3T3-E1 cells. In the present study, we examined the effect of dexamethasone on PGE2 synthesis induced by PGF2α in MC3T3-E1 cells. The pretreatment with dexamethasone significantly inhibited the PGE2 synthesis in a dose-dependent manner in the range between 0.1 and 10 nmol/l in these cells. This effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone also inhibited PGE2 synthesis induced by melittin, known as a phospholipase A2 activator. Furthermore, dexamethasone significantly inhibited the enhancement of PGF2α- or melittin-induced PGE2 synthesis by 12-O-tetradecanoylphorbol-13-acetate, known as a protein kinase C activator. In addition, dexamethasone significantly inhibited PGF2α-induced formation of inositol phosphates in a dose-dependent manner between 0.1 and 10 nmol/l in MC3T3-E1 cells. These results strongly suggest that glucocorticoid inhibits PGF2α-induced PGE2 synthesis through the inhibition of phosphoinositide hydrolysis by phospholipase C as well as phospholipase A2 in osteoblast-like cells. Osamu Kozawa, Department of Biochemistry, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Aichi 480-03, Japan


1997 ◽  
Vol 272 (2) ◽  
pp. G246-G256 ◽  
Author(s):  
C. S. Chew ◽  
C. J. Zhou ◽  
J. A. Parente

Although activation of adenosine 3',5'-cyclic monophosphate by histamine and of Ca2+-dependent signaling pathways by cholinergic agonists is a generally recognized mechanism for increasing parietal cell HCl secretion, the role of protein kinase C (PKC) in this process is controversial. In this study, acid-secretory responses of gastric glands from rabbits [measured as accumulation of aminopyrine (AP)] were found to be relatively resistant to the PKC inhibitors calphostin C, chelerythrine chloride, staurosporine, and the bisindolylmaleimide-like inhibitors Ro 31-8220, Go 6976, and bisindolylmaleimide I hydrochloride. Western analyses of the PKC isozyme profile in highly enriched parietal cells (98% purity) indicated that this cell type expresses abundant levels of the novel isoforms PKC-epsilon and PKC-mu and abundant levels of the atypical isoforms PKC-iota, PKC-lambda, and PKC-zeta. In contrast, there appeared to be low to undetectable expression of the classical isoforms PKC-alpha and PKC-beta1/beta2, respectively. Relatively high concentrations of Ro 31-8220 potentiated both carbachol- and histamine-stimulated AP accumulation (IC50 857 +/- 100 and 910 +/- 98 nM, respectively). There was a similar dose dependence for Ro 31-8220 inhibition of in situ phosphorylation of a parietal cell phosphoprotein, pp66 (IC50 750 +/- 120 nM). Similar concentrations of Ro 31-8220 also inhibited phosphorylation of the cytoskeletal, actin membrane cross-linking phosphoprotein ezrin, but not other phosphoproteins. Ezrin phosphorylation was increased by carbachol and 12-O-tetradecanoylphorbol 13-acetate (TPA). Because carbachol and TPA stimulate pp66 phosphorylation in a Ca2+-independent manner, our results suggest that one or more novel PKC isoforms may be involved in negative regulation of HCl secretion. In related experiments, PKC-epsilon, but not PKC-mu, was immunolocalized by confocal microscopy to a parietal cell compartment that bore a striking resemblance to that containing filamentous actin. Moreover, pp66 was enriched in a Triton X-100-insoluble parietal cell fraction, suggesting a potential cytoskeletal localization for this unknown protein. Given their location and sensitivity to Ro 31-8220, it is possible that pp66 and ezrin interact in a PKC-dependent manner to regulate the well-known morphological changes that occur in concert with agonist-dependent activation of parietal cell HCl secretion.


1991 ◽  
Vol 273 (2) ◽  
pp. 405-408 ◽  
Author(s):  
S P Saxena ◽  
C Robertson ◽  
A B Becker ◽  
J M Gerrard

In previous reports, we have provided evidence indicating that newly formed histamine is an intracellular messenger in human platelets. The involvement of protein kinase C (PKC) and intracellular calcium (Ca2+i) in the synthesis of histamine was investigated. Human platelets were stimulated by phorbol 12-myristate 13-acetate (PMA), collagen and the Ca2+ ionophore A23187, with or without the PKC inhibitor staurosporine. Aggregation, histamine synthesis and phosphorylation of pleckstrin (47 kDa; P47) and myosin light chain (20 kDa; P20) proteins were monitored. Staurosporine inhibited PMA- and collagen-induced aggregation, histamine synthesis and phosphorylation of 47 kDa and 20 kDa proteins in a dose-dependent manner. For PMA, median inhibitory concentrations (IC50 values) for staurosporine inhibition of aggregation, histamine synthesis and phosphorylation were similar, suggesting that histamine synthesis induced by this agonist may be a consequence of PKC activation. Conversely, collagen-stimulated histamine synthesis was inhibited by staurosporine at concentrations significantly higher than those required to inhibit aggregation (P less than 0.005) or pleckstrin phosphorylation (P less than 0.01), indicating the possible involvement of non-PKC mechanism(s) in the synthesis of histamine induced by this agonist. A23187 failed to induce the synthesis of intracellular histamine in platelets, whereas staurosporine blocked A23187-induced aggregation and phosphorylation of the 20 kDa protein at significantly higher concentrations than those needed to inhibit PKC. When platelets were stimulated with a combination of A23187 and PMA, the increase in platelet histamine was less than that with PMA alone. The results provide evidence that the synthesis of intracellular histamine in platelets occurs as a consequence of PKC activation and may be down-regulated under conditions where there is a substantial rise in [Ca2+]i.


1993 ◽  
Vol 136 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A. M. Vinggaard ◽  
H. S. Hansen

ABSTRACT In the present study we report that bradykinin stimulated phospholipase D activity in rat Leydig cells. Bradykinin added for 8 min stimulated choline formation in a dose-dependent manner and, in the presence of ethanol, bradykinin (100 nmol/l) stimulated transphosphatidylation by phospholipase D resulting in the formation of phosphatidylethanol. This stimulation was abolished after down-regulation of protein kinase C by long-term pretreatment for 22 h with phorbol 12-myristate 13-acetate (PMA). The stimulation of phospholipase D by the simultaneous addition for 8 min of maximum concentrations of PMA and vasopressin (AVP), PMA and bradykinin, or AVP and bradykinin produced no additive phosphatidylethanol or choline response, suggesting that AVP, bradykinin and PMA stimulated phospholipase D-catalysed phosphatidylcholine hydrolysis by a similar protein kinase C-dependent mechanism. Furthermore, LH (10 ng/ml), insulin (500 nmol/l), GH (100 ng/ml), interleukin-1β (5 U/ml) and platelet-activating factor (200 nmol/l) were found not to activate phospholipase D, whereas the Ca2+ ionophore A23187 (10 μmol/l) stimulated phosphatidylethanol formation, suggesting that Ca2+ might be a regulator of phospholipase D in Leydig cells. Journal of Endocrinology (1993) 136, 119–126


1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


FEBS Letters ◽  
1985 ◽  
Vol 192 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Kimihiko Sano ◽  
Hajime Nakamura ◽  
Tamotsu Matsuo ◽  
Yasuhiro Kawahara ◽  
Hisashi Fukuzaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document