scholarly journals Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1

2014 ◽  
Vol 127 (6) ◽  
pp. 1357-1357
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  
2013 ◽  
Vol 127 (3) ◽  
pp. 583-598 ◽  
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2402 ◽  
Author(s):  
Cora Sandra Thiel ◽  
Svantje Tauber ◽  
Beatrice Lauber ◽  
Jennifer Polzer ◽  
Christian Seebacher ◽  
...  

The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.


2015 ◽  
Vol 3 (12) ◽  
pp. 1539-1544 ◽  
Author(s):  
S. Inoue ◽  
V. Frank ◽  
M. Hörning ◽  
S. Kaufmann ◽  
H. Y. Yoshikawa ◽  
...  

Stimulus responsive hydrogels and live cell imaging allow for the quantitative parameterization of symmetry breaking in remodelling actin cytoskeleton.


2019 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

SUMMARYDendritic spines are specialized postsynaptic structures that detect and integrate presynaptic signals. The shape and number of dendritic spines are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been previously reported in invertebrates, suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we document the presence of dendritic spines inCaenorhabditis elegansmotor neurons. We used super-resolution microscopy, electron microscopy, live-cell imaging and genetic manipulation to show that GABAergic motor neurons display functional dendritic spines. Our analysis revealed salient features of dendritic spines: (1) A key role for the actin cytoskeleton in spine morphogenesis; (2) Postsynaptic receptor complexes at the tips of spines in close proximity to presynaptic active zones; (3) Localized postsynaptic calcium transients evoked by presynaptic activity; (4) The presence of endoplasmic reticulum and ribosomes; (5) The regulation of spine density by presynaptic activity. These studies provide a solid foundation for a new experimental paradigm that exploits the power ofC. elegansgenetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.HIGHLIGHTS-Spines inC. elegansGABAergic motor neurons are enriched in actin cytoskeleton.-Spines are dynamic structures.-Spines display Ca++transients coupled with presynaptic activation.-Spine density is regulated during development and is modulated by actin dynamics and cholinergic signaling.


2019 ◽  
Author(s):  
Cara R. Schiavon ◽  
Tong Zhang ◽  
Bing Zhao ◽  
Leonardo Andrade ◽  
Melissa Wu ◽  
...  

AbstractThe actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are difficult to detect with fluorescence microscopy. We developed an approach using fluorescent protein-tagged actin nanobodies targeted to organelle membranes to enable live cell imaging of sub-organellar actin dynamics with unprecedented spatiotemporal resolution. These probes reveal that ER-associated actin drives fission of multiple organelles including mitochondria, endosomes, lysosomes, peroxisomes, and the Golgi.


Sign in / Sign up

Export Citation Format

Share Document