scholarly journals Dendritic spines on GABAergic neurons respond to cholinergic signaling in theCaenorhabditis elegansmotor circuit

2019 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

SUMMARYDendritic spines are specialized postsynaptic structures that detect and integrate presynaptic signals. The shape and number of dendritic spines are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been previously reported in invertebrates, suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we document the presence of dendritic spines inCaenorhabditis elegansmotor neurons. We used super-resolution microscopy, electron microscopy, live-cell imaging and genetic manipulation to show that GABAergic motor neurons display functional dendritic spines. Our analysis revealed salient features of dendritic spines: (1) A key role for the actin cytoskeleton in spine morphogenesis; (2) Postsynaptic receptor complexes at the tips of spines in close proximity to presynaptic active zones; (3) Localized postsynaptic calcium transients evoked by presynaptic activity; (4) The presence of endoplasmic reticulum and ribosomes; (5) The regulation of spine density by presynaptic activity. These studies provide a solid foundation for a new experimental paradigm that exploits the power ofC. elegansgenetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.HIGHLIGHTS-Spines inC. elegansGABAergic motor neurons are enriched in actin cytoskeleton.-Spines are dynamic structures.-Spines display Ca++transients coupled with presynaptic activation.-Spine density is regulated during development and is modulated by actin dynamics and cholinergic signaling.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in C. elegans (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that C. elegans motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca++ stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of C. elegans genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.


2006 ◽  
Vol 66 (6) ◽  
pp. 564-577 ◽  
Author(s):  
Janis E. Lochner ◽  
Leah S. Honigman ◽  
Wilmon F. Grant ◽  
Sarah K. Gessford ◽  
Alexis B. Hansen ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2402 ◽  
Author(s):  
Cora Sandra Thiel ◽  
Svantje Tauber ◽  
Beatrice Lauber ◽  
Jennifer Polzer ◽  
Christian Seebacher ◽  
...  

The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.


2014 ◽  
Vol 127 (6) ◽  
pp. 1357-1357
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  

2021 ◽  
Author(s):  
Sierra Palumbos ◽  
Rachel Skelton ◽  
Rebecca McWhirter ◽  
Amanda Mitchell ◽  
Isaiah Swann ◽  
...  

Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here we show that a transcriptional program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. For these studies, we use live cell imaging to visualize electrical synapses in vivo and a novel optogenetic assay to confirm that they are functional. In VA motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. We show that cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments in an intact nervous system establish that cAMP regulates gap junction trafficking for the biogenesis of electrical synapses.


2013 ◽  
Vol 127 (3) ◽  
pp. 583-598 ◽  
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  

2015 ◽  
Vol 3 (12) ◽  
pp. 1539-1544 ◽  
Author(s):  
S. Inoue ◽  
V. Frank ◽  
M. Hörning ◽  
S. Kaufmann ◽  
H. Y. Yoshikawa ◽  
...  

Stimulus responsive hydrogels and live cell imaging allow for the quantitative parameterization of symmetry breaking in remodelling actin cytoskeleton.


2008 ◽  
Vol 105 (48) ◽  
pp. 18982-18987 ◽  
Author(s):  
U. V. Nagerl ◽  
K. I. Willig ◽  
B. Hein ◽  
S. W. Hell ◽  
T. Bonhoeffer

2019 ◽  
Vol 6 (11) ◽  
pp. 3237-3244 ◽  
Author(s):  
C. Elamathi ◽  
R. J. Butcher ◽  
A. Mohankumar ◽  
P. Sundararaj ◽  
A. Madankumar ◽  
...  

A highly sensitive and selective “on–off–on” chemosensor for aspartic acid in aqueous solution was established. In vitro live cell imaging against MCF 7 cells and in vivo imaging using C. elegans were successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document