scholarly journals Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages

2019 ◽  
Vol 20 (10) ◽  
pp. 2402 ◽  
Author(s):  
Cora Sandra Thiel ◽  
Svantje Tauber ◽  
Beatrice Lauber ◽  
Jennifer Polzer ◽  
Christian Seebacher ◽  
...  

The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.

2014 ◽  
Vol 127 (6) ◽  
pp. 1357-1357
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  

2013 ◽  
Vol 127 (3) ◽  
pp. 583-598 ◽  
Author(s):  
C. Hoffmann ◽  
D. Moes ◽  
M. Dieterle ◽  
K. Neumann ◽  
F. Moreau ◽  
...  

2020 ◽  
Vol 94 (10) ◽  
pp. 3553-3561
Author(s):  
Hauke Reimann ◽  
Helga Stopper ◽  
Henning Hintzsche

Abstract Micronuclei are small nuclear cellular structures containing whole chromosomes or chromosomal fragments. While there is a lot of information available about the origin and formation of micronuclei, less is known about the fate of micronuclei and micronucleated cells. Possible fates include extrusion, degradation, reincorporation and persistence. Live cell imaging was performed to quantitatively analyse the fates of micronuclei and micronucleated cells occurring in vitro. Imaging was conducted for up to 96 h in HeLa-H2B-GFP cells treated with 0.5, 1 and 2 µg/ml etoposide. While a minority of micronuclei was reincorporated into the main nucleus during mitosis, the majority of micronuclei persisted without any alterations. Degradation and extrusion were observed rarely or never. The presence of micronuclei affected the proliferation of the daughter cells and also had an influence on cell death rates. Mitotic errors were found to be clearly increased in micronucleus-containing cells. The results show that micronuclei and micronucleated cells can, although delayed in cell cycle, sustain for multiple divisions.


2015 ◽  
Vol 3 (12) ◽  
pp. 1539-1544 ◽  
Author(s):  
S. Inoue ◽  
V. Frank ◽  
M. Hörning ◽  
S. Kaufmann ◽  
H. Y. Yoshikawa ◽  
...  

Stimulus responsive hydrogels and live cell imaging allow for the quantitative parameterization of symmetry breaking in remodelling actin cytoskeleton.


2019 ◽  
Author(s):  
Andrea Cuentas-Condori ◽  
Ben Mulcahy ◽  
Siwei He ◽  
Sierra Palumbos ◽  
Mei Zhen ◽  
...  

SUMMARYDendritic spines are specialized postsynaptic structures that detect and integrate presynaptic signals. The shape and number of dendritic spines are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been previously reported in invertebrates, suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we document the presence of dendritic spines inCaenorhabditis elegansmotor neurons. We used super-resolution microscopy, electron microscopy, live-cell imaging and genetic manipulation to show that GABAergic motor neurons display functional dendritic spines. Our analysis revealed salient features of dendritic spines: (1) A key role for the actin cytoskeleton in spine morphogenesis; (2) Postsynaptic receptor complexes at the tips of spines in close proximity to presynaptic active zones; (3) Localized postsynaptic calcium transients evoked by presynaptic activity; (4) The presence of endoplasmic reticulum and ribosomes; (5) The regulation of spine density by presynaptic activity. These studies provide a solid foundation for a new experimental paradigm that exploits the power ofC. elegansgenetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.HIGHLIGHTS-Spines inC. elegansGABAergic motor neurons are enriched in actin cytoskeleton.-Spines are dynamic structures.-Spines display Ca++transients coupled with presynaptic activation.-Spine density is regulated during development and is modulated by actin dynamics and cholinergic signaling.


2020 ◽  
Author(s):  
Alexandra P Navarro ◽  
Iain M Cheeseman

Understanding cell biological behaviors requires the ability to visualize different cellular structures and compartments. Excellent markers and tagged proteins exist to detect key cellular structures such as the ER and mitochondrion, where minimal targeting motifs can be used to image and target proteins to these specific organelles (Raykhel et al., 2007); (Bear, 2000; Kim & Hwang, 2013). These markers make visualizing these organelles robust and easy, and provide insights into the requirements for targeting proteins to these subcellular compartments. In the course of our ongoing work, we identified a 37 amino acid peptide that is encoded by a hypothetical alternative open reading frame (altORF) within the mRNA produced for the CENP-R gene. Unlike the centromere-localized canonical CENP-R protein, we find that this small peptide localizes specifically to the Golgi compartment. Our studies demonstrate that this altORF peptide can act as a valuable tool for cell biology experimentation to visualize the Golgi for both fixed and live cell analyses.


2019 ◽  
Author(s):  
Cara R. Schiavon ◽  
Tong Zhang ◽  
Bing Zhao ◽  
Leonardo Andrade ◽  
Melissa Wu ◽  
...  

AbstractThe actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are difficult to detect with fluorescence microscopy. We developed an approach using fluorescent protein-tagged actin nanobodies targeted to organelle membranes to enable live cell imaging of sub-organellar actin dynamics with unprecedented spatiotemporal resolution. These probes reveal that ER-associated actin drives fission of multiple organelles including mitochondria, endosomes, lysosomes, peroxisomes, and the Golgi.


Sign in / Sign up

Export Citation Format

Share Document