scholarly journals TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation

2020 ◽  
Vol 133 (24) ◽  
pp. jcs247841 ◽  
Author(s):  
Carlos Martín-Rodríguez ◽  
Minseok Song ◽  
Begoña Anta ◽  
Francisco J. González-Calvo ◽  
Rubén Deogracias ◽  
...  

ABSTRACTUbiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo. We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.

2014 ◽  
Author(s):  
◽  
Danny A. Stark

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Skeletal muscle can be isolated into 642 individual muscles and makes up to one third to one half of the mass of the human body. Each of these muscles is specified and patterned prenatally and after birth they will increase in size and take on characteristics suited to each muscle's unique function. To make the muscles functional, each muscle cell must be innervated by a motor neuron, which will also affect the characteristics of the mature muscle. In a healthy adult, muscles will maintain their specialized pattern and function during physiological homeostasis, and will also recapitulate them if the integrity or health of the muscle is disrupted. This repair and regeneration is dependent satellite cells, the skeletal muscle stem cells. In this dissertation, we study a family of receptor tyrosine kinases, Ephs, and their juxtacrine ephrin ligands in the context of skeletal muscle specification and regeneration. First, using a classical ephrin 'stripe' assay to test for contact-mediated repulsion, we found that satellite cells respond to a subset of ephrins with repulsive motility in vitro and that these forward signals through Ephs also promote patterning of differentiating myotubes parallel to ephrin stripes. This pattering can be replicated in a heterologous in vivo system (the hindbrain of the developing quail, where neural crest cells migrate in streams to the branchial arches, and in the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite). Second, we present evidence that specific pairwise interactions between Eph receptor tyrosine kinases and ephrin ligands are required to ensure appropriate muscle innervation when it is originally set during postnatal development and when it is recapitulated after muscle or nerve trauma during adulthood. We show expression of a single ephrin, ephrin-A3, exclusively on type I (slow) myofibers shortly after birth, while its receptor EphA8 is only localized to fast motor endplates, suggesting a functional repulsive interaction for motor axon guidance and/or synaptogenesis. Adult EFNA3-/- mutant mice show a significant loss of slow myofibers, while misexpression of ephrin-A3 on fast myofibers results in a switch from a fast fiber type to slow in the context of sciatic nerve injury and regrowth. Third, we show that EphA7 is expressed on satellite cell derived myocytes in vitro, and marks both myocytes and regenerating myofibers in vivo. In the EPHA7 knockout mouse, we find a regeneration defect in a barium chloride injury model starting 3 days post injection in vivo, and that cultured mutant satellite cells are slow to differentiate and divide. Finally, we present other potential Ephs and ephrins that may affect skeletal muscle, such as EphB1 that is expressed on all MyHC-IIb fibers and a subset of MyHC-IIx fibers, and we show a multitude of Ephs and ephrins at the neuromuscular junction that appear to localize on specific myofibers and at different areas of the synapse. We propose that Eph/ephrin signaling, though well studied in development, continues to be important in regulating post natal development, regeneration, and homeostasis of skeletal muscle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sareshma Sudhesh Dev ◽  
Syafiq Asnawi Zainal Abidin ◽  
Reyhaneh Farghadani ◽  
Iekhsan Othman ◽  
Rakesh Naidu

Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e18532-e18532
Author(s):  
Mathilde Cabart ◽  
Judith Raimbourg ◽  
Lisenn Lalier ◽  
Jaafar Bennouna ◽  
Francois Vallette

e18532 Background: EGFR tyrosine kinase inhibitors (EGFR TKI) have improved the therapeutic care of lung cancer patients but only a small sub-population of patients, namely those harboring EGFR-mutated tumors, benefit from this therapy. The observation that EGFR TKI enhance prognosis and quality of life in all patients when used as second line or maintenance treatment impelled us into the search of potential markers of the optimal introduction kinetics of EGFR TKI in the therapeutic scheme. Methods: We used lung cancer cell lines harboring either wild-type or mutated EGFR (NCI-H1650, NCI-H1975) to study the consequences of cisplatin treatment in vitro on the consecutive sensitivity to erlotinib. Results: Sub-lethal cisplatin pretreatment (3µM) enhances erlotinib toxicity in EGFR wild-type, but not EGFR mutated cells (A549 IC50 drops from 28 to 15µM for short-term or 12µM for long-term exposure). This correlates with EGFR activation following short-term or prolonged cisplatin treatment through the secretion of EGFR ligands. This activation of EGFR is concomitant to the decrease in other receptor tyrosine kinases phosphorylation including Met. Conclusions: The sensitivity of EGFR wild-type lung cancer cells to erlotinib in vitro is enhanced by cisplatin pretreatment. We identified potential markers of this sensitization, namely EGFR ligands, which serum level might be predicitive of the optimal efficiency of EGFR TKI. In vivo validation of these markers is under investigation. The concomitant decrease in other receptor tyrosine kinases phosphorylation suggests that the targeting of other receptor tyrosine kinases might potentiate EGFR TKI efficiency.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4317-4326 ◽  
Author(s):  
Michihiro Yano ◽  
Atsushi Iwama ◽  
Hitoshi Nishio ◽  
Junko Suda ◽  
Goro Takada ◽  
...  

Abstract Two highly related receptor tyrosine kinases, TIE and TEK, comprise a family of endothelial cell-specific kinase. We established monoclonal antibodies against them and performed detailed analyses on their expression and function in murine hematopoietic stem cells (HSCs). TIE and TEK were expressed on 23.7% and 33.3% of lineage marker-negative, c-Kit+ and Sca-1+ (Lin− c-Kit+ Sca-1+) HSCs that contain the majority of day-12 colony-forming units-spleen (CFU-S) and long-term reconstituting cells, but not committed progenitor cells. Lin− c-Kit+ Sca-1+ cells were further divided by the expression of TIE and TEK. TIE+ and TEK+ HSCs as well as each negative counterpart contained high proliferative potential colony-forming cells and differentiated into lymphoid and myeloid progenies both in vitro and in vivo. However, day-12 CFU-S were enriched in TIE+ and TEK+ HSCs. Our findings define TIE and TEK as novel stem cell marker antigens that segregate day-12 CFU-S, and provide evidence of novel signaling pathways that are involved in the functional regulation of HSCs at a specific stage of differentiation, particularly of day-12 CFU-S.


2002 ◽  
Vol 68 (2) ◽  
pp. 150-160 ◽  
Author(s):  
Hiroshi Funakoshi ◽  
Tomoko Yonemasu ◽  
Toru Nakano ◽  
Kunio Matumoto ◽  
Toshikazu Nakamura

Cancer ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 3233-3243 ◽  
Author(s):  
Kristen N. Richards ◽  
Patrick A. Zweidler-McKay ◽  
Nadine Van Roy ◽  
Frank Speleman ◽  
Jesus Trevino ◽  
...  

Author(s):  
Sumei Li ◽  
Jifeng Zhang ◽  
Jiaqi Zhang ◽  
Jiong Li ◽  
Longfei Cheng ◽  
...  

Aims: Our work aims to revealing the underlying microtubule mechanism of neurites outgrowth during neuronal development, and also proposes a feasible intervention pathway for reconstructing neural network connections after nerve injury. Background: Microtubule polymerization and severing are the basis for the neurite outgrowth and branch formation. Collapsin response mediator protein 2 (CRMP2) regulates axonal growth and branching as a binding partner of the tubulin heterodimer to promote microtubule assembly. And spastin participates in the growth and regeneration of neurites by severing microtubules into small segments. However, how CRMP2 and spastin cooperate to regulate neurite outgrowth by controlling the microtubule dynamics needs to be elucidated. Objective: To explore whether neurite outgrowth was mediated by coordination of CRMP2 and spastin. Method: Hippocampal neurons were cultured in vitro in 24-well culture plates for 4 days before being used to perform the transfection. Calcium phosphate was used to transfect the CRMP2 and spastin constructs and their control into the neurons. An interaction between CRMP2 and spastin was examined by using pull down, CoIP and immunofluorescence colocalization assays. And immunostaining was also performed to determine the morphology of neurites. Result: We first demonstrated that CRMP2 interacted with spastin to promote the neurite outgrowth and branch formation. Furthermore, our results identified that phosphorylation modification failed to alter the binding affinities of CRMP2 for spastin, but inhibited their binding to microtubules. CRMP2 interacted with the MTBD domain of spastin via its C-terminus, and blocking the binding sites of them inhibited the outgrowth and branch formation of neurites. In addition, we confirmed one phosphorylation site S210 at spastin in hippocampal neurons and phosphorylation spastin at site S210 promoted the neurite outgrowth but not branch formation by remodeling microtubules. Conclusion: Taken together, our data demonstrated that the interaction of CRMP2 and spastin is required for neurite outgrowth and branch formation and their interaction is not regulated by their phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document