scholarly journals APC/CCdh1 is required for the termination of chromosomal passenger complex activity upon mitotic exit

2020 ◽  
Vol 133 (18) ◽  
pp. jcs251314
Author(s):  
Takaaki Tsunematsu ◽  
Rieko Arakaki ◽  
Hidehiko Kawai ◽  
Jan Ruppert ◽  
Koichi Tsuneyama ◽  
...  

ABSTRACTDuring mitosis, the chromosomal passenger complex (CPC) ensures the faithful transmission of the genome. The CPC is composed of the enzymatic component Aurora B (AURKB) and the three regulatory and targeting components borealin, INCENP, and survivin (also known as BIRC5). Although the CPC is known to be involved in diverse mitotic events, it is still unclear how CPC function terminates after mitosis. Here we show that borealin is ubiquitylated by the anaphase promoting complex/cyclosome (APC/C) and its cofactor Cdh1 (also known as FZR1) and is subsequently degraded in G1 phase. Cdh1 binds to regions within the N terminus of borealin that act as a non-canonical degron. Aurora B has also been shown previously to be degraded by the APC/CCdh1 from late mitosis to G1. Indeed, Cdh1 depletion sustains an Aurora B activity with stable levels of borealin and Aurora B throughout the cell cycle, and causes reduced efficiency of DNA replication after release from serum starvation. Notably, inhibition of Aurora B kinase activity improves the efficiency of DNA replication in Cdh1-depleted cells. We thus propose that APC/CCdh1 terminates CPC activity upon mitotic exit and thereby contributes to proper control of DNA replication.

2011 ◽  
Vol 195 (3) ◽  
pp. 449-466 ◽  
Author(s):  
Eleni Petsalaki ◽  
Tonia Akoumianaki ◽  
Elizabeth J. Black ◽  
David A.F. Gillespie ◽  
George Zachos

Aurora B kinase activity is required for successful cell division. In this paper, we show that Aurora B is phosphorylated at serine 331 (Ser331) during mitosis and that phosphorylated Aurora B localizes to kinetochores in prometaphase cells. Chk1 kinase is essential for Ser331 phosphorylation during unperturbed prometaphase or during spindle disruption by taxol but not nocodazole. Phosphorylation at Ser331 is required for optimal phosphorylation of INCENP at TSS residues, for Survivin association with the chromosomal passenger complex, and for complete Aurora B activation, but it is dispensable for Aurora B localization to centromeres, for autophosphorylation at threonine 232, and for association with INCENP. Overexpression of Aurora BS331A, in which Ser331 is mutated to alanine, results in spontaneous chromosome missegregation, cell multinucleation, unstable binding of BubR1 to kinetochores, and impaired mitotic delay in the presence of taxol. We propose that Chk1 phosphorylates Aurora B at Ser331 to fully induce Aurora B kinase activity. These results indicate that phosphorylation at Ser331 is an essential mechanism for Aurora B activation.


2019 ◽  
Author(s):  
Christine M. Field ◽  
James F. Pelletier ◽  
Timothy J. Mitchison

AbstractWe investigated how bulk cytoplasm prepares for cytokinesis in Xenopus laevis eggs, which are large, rapidly dividing cells. The egg midplane is demarcated by Chromosomal Passenger Complex (CPC) localized on microtubule bundles between asters. Using an extract system and intact eggs we found that local kinase activity of the AURKB subunit of the CPC caused disassembly of F-actin and keratin between asters, and local softening of the cytoplasm as assayed by flow patterns. Beads coated with active CPC mimicked aster boundaries and caused AURKB-dependent disassembly of F-actin and keratin that propagated ~40 μm without microtubules, and much farther with microtubules present, due to CPC auto-activation. We propose that active CPC at aster boundaries locally reduces cytoplasmic stiffness by disassembling actin and keratin networks. This may help sister centrosomes move apart after mitosis, prepare a soft path for furrow ingression and/or release G-actin to build the furrow cortex.


2010 ◽  
Vol 38 (6) ◽  
pp. 1655-1659 ◽  
Author(s):  
Xavier Fant ◽  
Kumiko Samejima ◽  
Ana Carvalho ◽  
Hiromi Ogawa ◽  
Zhenjie Xu ◽  
...  

The CPC [chromosomal passenger complex; INCENP (inner centromere protein), Aurora B kinase, survivin and borealin] is implicated in many mitotic processes. In the present paper we describe how we generated DT40 conditional-knockout cell lines for incenp1 and survivin1 to better understand the role of these CPC subunits in the control of Aurora B kinase activity. These lines enabled us to reassess current knowledge of survivin function and to show that INCENP acts as a rheostat for Aurora B activity.


2006 ◽  
Vol 17 (6) ◽  
pp. 2547-2558 ◽  
Author(s):  
Ulf R. Klein ◽  
Erich A. Nigg ◽  
Ulrike Gruneberg

The chromosomal passenger complex (CPC), consisting of the serine/threonine kinase Aurora B, the inner centromere protein INCENP, Survivin, and Borealin/DasraB, has essential functions at the centromere in ensuring correct chromosome alignment and segregation. Despite observations that small interfering RNA-mediated knockdown of any one member of the CPC abolishes localization of the other subunits, it remains unclear how the complex is targeted to the centromere. We have now identified a ternary subcomplex of the CPC comprising Survivin, Borealin, and the N-terminal 58 amino acids of INCENP in vitro and in vivo. This subcomplex was found to be essential and sufficient for targeting to the centromere. Notably, Aurora B kinase, the enzymatic core of the CPC, was not required for centromere localization of the subcomplex. We demonstrate that CPC targeting to the centromere does not depend on CENP-A and hMis12, two core components for kinetochore/centromere assembly, and provide evidence that the CPC may be directed to centromeric DNA directly via the Borealin subunit. Our findings thus establish a functional module within the CPC that assembles on the N terminus of INCENP and controls centromere recruitment.


2009 ◽  
Vol 20 (16) ◽  
pp. 3646-3659 ◽  
Author(s):  
K. Adam Bohnert ◽  
Jun-Song Chen ◽  
Dawn M. Clifford ◽  
Craig W. Vander Kooi ◽  
Kathleen L. Gould

The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe . Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1–Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe .


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3350
Author(s):  
Eleni Petsalaki ◽  
George Zachos

The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.


2019 ◽  
Vol 218 (12) ◽  
pp. 3912-3925 ◽  
Author(s):  
Maria A. Abad ◽  
Jan G. Ruppert ◽  
Lana Buzuk ◽  
Martin Wear ◽  
Juan Zou ◽  
...  

Chromosome association of the chromosomal passenger complex (CPC; consisting of Borealin, Survivin, INCENP, and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres, failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin–nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


2020 ◽  
Vol 31 (20) ◽  
pp. 2207-2218 ◽  
Author(s):  
Mary Kate Bonner ◽  
Julian Haase ◽  
Hayden Saunders ◽  
Hindol Gupta ◽  
Biyun Iris Li ◽  
...  

This study provides the molecular mechanism for the interaction of Sgo1 with the chromosomal passenger complex and explores the specific role of Sgo1 in regulating Aurora B functions that ensure the equal segregation of chromosomes.


Sign in / Sign up

Export Citation Format

Share Document