scholarly journals The role of Aspergillus nidulans polo-like kinase PlkA in microtubule-organizing center control

2021 ◽  
Author(s):  
Xiaolei Gao ◽  
Saturnino Herrero ◽  
Valentin Wernet ◽  
Sylvia Erhardt ◽  
Oliver Valerius ◽  
...  

Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) were described in many cell types. Functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans additional MTOCs were discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates SPB outer plaque with sMTOC activities. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest polo-like kinase as a regulator of MTOC activities and as a scaffolding unit through interaction with γ-tubulin ring complex receptors.

1995 ◽  
Vol 73 (S1) ◽  
pp. 122-125 ◽  
Author(s):  
James R. Aist

Independent nuclear motility is involved in many important aspects of fungal life cycles, including the following: nuclear division; population of hyphal tip cells, branches, and spores with nuclei; dikaryotization; and karyogamy. Spindle pole bodies are almost constantly in motion during all phases of the nuclear cycle, and they have been linked to most instances of independent nuclear motility. A role for microtubules in this process is now well established, and research is being focused on which set of them, astral or cytoplasmic, is utilized as well as on the microtubule-associated motor proteins that may generate the force. In some cases, F-actin may interact with the microtubules or even provide an alternative cytoskeleton supporting nuclear migration. Hyphal tip growth and independent nuclear motility are coordinated and interrelated processes, making the elucidation of the signals, processes, and structures involved an attractive area for further research. Key words: actin, microtubule, microtubule associated protein, microtubule organizing center, motility, nucleus.


2013 ◽  
Vol 24 (18) ◽  
pp. 2894-2906 ◽  
Author(s):  
Hirohisa Masuda ◽  
Risa Mori ◽  
Masashi Yukawa ◽  
Takashi Toda

γ-Tubulin plays a universal role in microtubule nucleation from microtubule organizing centers (MTOCs) such as the animal centrosome and fungal spindle pole body (SPB). γ-Tubulin functions as a multiprotein complex called the γ-tubulin complex (γ-TuC), consisting of GCP1–6 (GCP1 is γ-tubulin). In fungi and flies, it has been shown that GCP1–3 are core components, as they are indispensable for γ-TuC complex assembly and cell division, whereas the other three GCPs are not. Recently a novel conserved component, MOZART1, was identified in humans and plants, but its precise functions remain to be determined. In this paper, we characterize the fission yeast homologue Mzt1, showing that it is essential for cell viability. Mzt1 is present in approximately equal stoichiometry with Alp4/GCP2 and localizes to all the MTOCs, including the SPB and interphase and equatorial MTOCs. Temperature-sensitive mzt1 mutants display varying degrees of compromised microtubule organization, exhibiting multiple defects during both interphase and mitosis. Mzt1 is required for γ-TuC recruitment, but not sufficient to localize to the SPB, which depends on γ-TuC integrity. Intriguingly, the core γ-TuC assembles in the absence of Mzt1. Mzt1 therefore plays a unique role within the γ-TuC components in attachment of this complex to the major MTOC site.


1995 ◽  
Vol 73 (S1) ◽  
pp. 352-358 ◽  
Author(s):  
Berl R. Oakley

γ-Tubulin is present in phylogenetically diverse eukaryotes. It is a component of microtubule organizing centers such as the spindle pole bodies of fungi. In Aspergillus nidulans and Schizosaccharomyces pombe, it is essential for nuclear division, and, thus, for viability. In A. nidulans, nuclei carrying a γ-tubulin disruption can be maintained in heterokaryons, and the phenotypes caused by the disruption can be determined in uninucleate spores produced by the heterokaryons. Experiments with heterokaryons created in strains with mutations that allow synchronization of the cell cycle reveal that γ-tubulin is not required for the transition from the G1 phase of the cell cycle through S phase to G2, nor for the entry into mitosis as judged by chromosomal condensation. It is, however, required for the formation of the mitotic spindle and for the successful completion of mitosis. Staining with the MPM-2 monoclonal antibody reveals that spindle pole body replication occurs in the absence of functional γ-tubulin. Finally, human γ-tubulin functions in fission yeast, and this indicates that γ-tubulin has similar functions in widely divergent organisms. Key words: tubulin, microtubule, spindle pole body, microtubule organizing center.


2015 ◽  
Vol 209 (4) ◽  
pp. 549-562 ◽  
Author(s):  
Masashi Yukawa ◽  
Chiho Ikebe ◽  
Takashi Toda

The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity.


Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 407-422 ◽  
Author(s):  
E A Vallen ◽  
W Ho ◽  
M Winey ◽  
M D Rose

Abstract KAR1 encodes an essential component of the yeast spindle pole body (SPB) that is required for karyogamy and SPB duplication. A temperature-sensitive mutation, kar1-delta 17, mapped to a region required for SPB duplication and for localization to the SPB. To identify interacting SPB proteins, we isolated 13 dominant mutations and 3 high copy number plasmids that suppressed the temperature sensitivity of kar1-delta 17. Eleven extragenic suppressor mutations mapped to two linkage groups, DSK1 and DSK2. The extragenic suppressors were specific for SPB duplication and did not suppress karyogamy-defective alleles. The major class, DSK1, consisted of mutations in CDC31. CDC31 is required for SPB duplication and encodes a calmodulin-like protein that is most closely related to caltractin/centrin, a protein associated with the Chlamydomonas basal body. The high copy number suppressor plasmids contained the wild-type CDC31 gene. One CDC31 suppressor allele conferred a temperature-sensitive defect in SPB duplication, which was counter-suppressed by recessive mutations in KAR1. In spite of the evidence for a direct interaction, the strongest CDC31 alleles, as well as both DSK2 alleles, suppressed a complete deletion of KAR1. However, the CDC31 alleles also made the cell supersensitive to KAR1 gene dosage, arguing against a simple bypass mechanism of suppression. We propose a model in which Kar1p helps localize Cdc31p to the SPB and that Cdc31p then initiates SPB duplication via interaction with a downstream effector.


2010 ◽  
Vol 9 (5) ◽  
pp. 795-805 ◽  
Author(s):  
Nadine Zekert ◽  
Daniel Veith ◽  
Reinhard Fischer

ABSTRACT Peroxisomes are a diverse class of organelles involved in different physiological processes in eukaryotic cells. Although proteins imported into peroxisomes carry a peroxisomal targeting sequence at the C terminus (PTS1) or an alternative one close to the N terminus (PTS2), the protein content of peroxisomes varies drastically. Here we suggest a new class of peroxisomes involved in microtubule (MT) formation. Eukaryotic cells assemble MTs from distinct points in the cell. In the fungus Aspergillus nidulans, septum-associated microtubule-organizing centers (sMTOCs) are very active in addition to the spindle pole bodies (SPBs). Previously, we identified a novel MTOC-associated protein, ApsB (Schizosaccharomyces pombe mto1), whose absence affected MT formation from sMTOCs more than from SPBs, suggesting that the two protein complexes are organized differently. We show here that sMTOCs share at least two further components, gamma-tubulin and GcpC (S. pombe Alp6) with SPBs and found that ApsB interacts with gamma-tubulin. In addition, we discovered that ApsB interacts with the Woronin body protein HexA and is targeted to a subclass of peroxisomes via a PTS2 peroxisomal targeting sequence. The PTS2 motif was necessary for function but could be replaced with a PTS1 motif at the C terminus of ApsB. These results suggest a novel function for a subclass of peroxisomes in cytoskeletal organization.


2010 ◽  
Vol 21 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Claudia Lang ◽  
Sandrine Grava ◽  
Tineke van den Hoorn ◽  
Rhonda Trimble ◽  
Peter Philippsen ◽  
...  

We investigated the migration of multiple nuclei in hyphae of the filamentous fungus Ashbya gossypii. Three types of cytoplasmic microtubule (cMT)-dependent nuclear movements were characterized using live cell imaging: short-range oscillations (up to 4.5 μm/min), rotations (up to 180° in 30 s), and long-range nuclear bypassing (up to 9 μm/min). These movements were superimposed on a cMT-independent mode of nuclear migration, cotransport with the cytoplasmic stream. This latter mode is sufficient to support wild-type-like hyphal growth speeds. cMT-dependent nuclear movements were led by a nuclear-associated microtubule-organizing center, the spindle pole body (SPB), which is the sole site of microtubule nucleation in A. gossypii. Analysis of A. gossypii SPBs by electron microscopy revealed an overall laminar structure similar to the budding yeast SPB but with distinct differences at the cytoplasmic side. Up to six perpendicular and tangential cMTs emanated from a more spherical outer plaque. The perpendicular and tangential cMTs most likely correspond to short, often cortex-associated cMTs and to long, hyphal growth-axis–oriented cMTs, respectively, seen by in vivo imaging. Each SPB nucleates its own array of cMTs, and the lack of overlapping cMT arrays between neighboring nuclei explains the autonomous nuclear oscillations and bypassing observed in A. gossypii hyphae.


2009 ◽  
Vol 20 (2) ◽  
pp. 616-630 ◽  
Author(s):  
Hui-Lin Liu ◽  
Colin P.C. De Souza ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


2019 ◽  
Vol 5 (5-6) ◽  
pp. 235-243 ◽  
Author(s):  
Jingyan Fu ◽  
Chuanmao Zhang

AbstractCentrosome is the main microtubule-organizing center in most animal cells. Its core structure, centriole, also assembles cilia and flagella that have important sensing and motility functions. Centrosome has long been recognized as a highly conserved organelle in eukaryotic species. Through electron microscopy, its ultrastructure was revealed to contain a beautiful nine-symmetrical core 60 years ago, yet its molecular basis has only been unraveled in the past two decades. The emergence of super-resolution microscopy allows us to explore the insides of a centrosome, which is smaller than the diffraction limit of light. Super-resolution microscopy also enables the compartmentation of centrosome proteins into different zones and the identification of their molecular interactions and functions. This paper compiles the centrosome architecture knowledge that has been revealed in recent years and highlights the power of several super-resolution techniques.


Sign in / Sign up

Export Citation Format

Share Document