scholarly journals Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans

2021 ◽  
Author(s):  
Joanna M. Wenda ◽  
Reinier F. Prosée ◽  
Caroline Gabus ◽  
Florian A. Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.

2021 ◽  
Author(s):  
Joanna M Wenda ◽  
Reinier F Prosée ◽  
Caroline Gabus ◽  
Florian A Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


Open Biology ◽  
2014 ◽  
Vol 4 (12) ◽  
pp. 140193 ◽  
Author(s):  
Yuko Akai ◽  
Ryuta Kanai ◽  
Norihiko Nakazawa ◽  
Masahiro Ebe ◽  
Chikashi Toyoshima ◽  
...  

Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.


2020 ◽  
Vol 117 (22) ◽  
pp. 12131-12142 ◽  
Author(s):  
Christian F. Nielsen ◽  
Tao Zhang ◽  
Marin Barisic ◽  
Paul Kalitsis ◽  
Damien F. Hudson

Topoisomerase IIα (TOP2A) is a core component of mitotic chromosomes and important for establishing mitotic chromosome condensation. The primary roles of TOP2A in mitosis have been difficult to decipher due to its multiple functions across the cell cycle. To more precisely understand the role of TOP2A in mitosis, we used the auxin-inducible degron (AID) system to rapidly degrade the protein at different stages of the human cell cycle. Removal of TOP2A prior to mitosis does not affect prophase timing or the initiation of chromosome condensation. Instead, it prevents chromatin condensation in prometaphase, extends the length of prometaphase, and ultimately causes cells to exit mitosis without chromosome segregation occurring. Surprisingly, we find that removal of TOP2A from cells arrested in prometaphase or metaphase cause dramatic loss of compacted mitotic chromosome structure and conclude that TOP2A is crucial for maintenance of mitotic chromosomes. Treatments with drugs used to poison/inhibit TOP2A function, such as etoposide and ICRF-193, do not phenocopy the effects on chromosome structure of TOP2A degradation by AID. Our data point to a role for TOP2A as a structural chromosome maintenance enzyme locking in condensation states once sufficient compaction is achieved.


2000 ◽  
Vol 11 (4) ◽  
pp. 1293-1304 ◽  
Author(s):  
Brigitte D. Lavoie ◽  
K. Michelle Tuffo ◽  
Scott Oh ◽  
Doug Koshland ◽  
Connie Holm

In vitro studies suggest that the Barren protein may function as an activator of DNA topoisomerase II and/or as a component of theXenopus condensin complex. To better understand the role of Barren in vivo, we generated conditional alleles of the structural gene for Barren (BRN1) in Saccharomyces cerevisiae. We show that Barren is an essential protein required for chromosome condensation in vivo and that it is likely to function as an intrinsic component of the yeast condensation machinery. Consistent with this view, we show that Barren performs an essential function during a period of the cell cycle when chromosome condensation is established and maintained. In contrast, Barren does not serve as an essential activator of DNA topoisomerase II in vivo. Finally,brn1 mutants display additional phenotypes such as stretched chromosomes, aberrant anaphase spindles, and the accumulation of cells with >2C DNA content, suggesting that Barren function influences multiple aspects of chromosome transmission and dynamics.


2014 ◽  
Vol 205 (6) ◽  
pp. 781-790 ◽  
Author(s):  
Yuya Kagami ◽  
Keishi Nihira ◽  
Shota Wada ◽  
Masaya Ono ◽  
Mariko Honda ◽  
...  

During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is largely unknown. Here, we show that Mps1 regulates initial chromosome condensation during mitosis. We identify condensin II as a novel Mps1-associated protein. Mps1 phosphorylates one of the condensin II subunits, CAP-H2, at Ser492 during mitosis, and this phosphorylation event is required for the proper loading of condensin II on chromatin. Depletion of Mps1 inhibits chromosomal targeting of condensin II and accurate chromosome condensation during prophase. These findings demonstrate that Mps1 governs chromosomal organization during the early stage of mitosis to facilitate proper chromosome segregation.


2017 ◽  
Author(s):  
Ahmed M.O. Elbatsh ◽  
Jonne A. Raaijmakers ◽  
Robin H. van der Weide ◽  
Jelmi Kuit de Bos ◽  
Hans Teunissen ◽  
...  

ABSTRACTChromosome condensation by condensin is essential for faithful chromosome segregation. Metazoans have two complexes, named condensin I and II. Both are thought to act by creating looped structures in DNA, but how they do so is unknown. Condensin’s SMC subunits together form a composite ATPase with two pseudo-symmetric ATPase sites. We reveal that these sites have opposite functions in the condensation process. One site drives condensation, while the other site rather has a dampening function. Mutation of this dampener site hyperactivates both condensin I and II complexes. We find that hyperactive condensin I efficiently shortens chromosomes in the total absence of condensin II. The two complexes form loops with different lengths, and specifically condensin II is key to the decatenation of sister chromatids and the formation of a straight chromosomal axis.


2018 ◽  
Author(s):  
Cláudia Pereira ◽  
Rita M. Reis ◽  
José B. Gama ◽  
Dhanya K. Cheerambathur ◽  
Ana X. Carvalho ◽  
...  

SUMMARYThe kinetochore is a dynamic multi-protein assembly that forms on each sister chromatid and interacts with microtubules of the mitotic spindle to drive chromosome segregation. In animals, kinetochores without attached microtubules expand their outermost layer into crescent and ring shapes to promote microtubule capture and spindle assembly checkpoint (SAC) signalling. Kinetochore expansion is an example of protein co-polymerization, but the mechanism is not understood. Here, we present evidence that kinetochore expansion is driven by oligomerization of the Rod-Zw10-Zwilch (RZZ) complex, an outer kinetochore component that recruits the motor dynein and the SAC proteins Mad1-Mad2. Depletion of ROD in human cells suppresses kinetochore expansion, as does depletion of Spindly, the adaptor that connects RZZ to dynein, while dynein itself is dispensable. Expansion is also suppressed by mutating ZWILCH residues implicated in Spindly binding. Conversely, supplying cells with excess ROD facilitates kinetochore expansion under otherwise prohibitive conditions. Using the C. elegans early embryo, we demonstrate that ROD-1 has a concentration-dependent propensity for oligomerizing into µm-scale filaments, and we identify the ROD-1 β-propeller as a key regulator of self-assembly. Finally, we show that a minimal ROD-1-Zw10 complex efficiently oligomerizes into filaments in vitro. Our results suggest that RZZ’s capacity for oligomerization is harnessed by kinetochores to assemble the expanded outermost domain, in which RZZ filaments serve as recruitment platforms for SAC components and microtubule-binding proteins. Thus, we propose that RZZ self-assembly into filaments underlies the adaptive change in kinetochore size that contributes to chromosome segregation fidelity.


2000 ◽  
Vol 11 (4) ◽  
pp. 1305-1313 ◽  
Author(s):  
Ilia I. Ouspenski ◽  
Olga A. Cabello ◽  
B. R. Brinkley

This work describes BRN1, the budding yeast homologue of Drosophila Barren andXenopus condensin subunit XCAP-H. TheDrosophila protein is required for proper chromosome segregation in mitosis, and Xenopus protein functions in mitotic chromosome condensation. Mutant brn1 cells show a defect in mitotic chromosome condensation and sister chromatid separation and segregation in anaphase. Chromatid cohesion before anaphase is properly maintained in the mutants. Somebrn1 mutant cells apparently arrest in S-phase, pointing to a possible function for Brn1p at this stage of the cell cycle. Brn1p is a nuclear protein with a nonuniform distribution pattern, and its level is up-regulated at mitosis. Temperature-sensitive mutations ofBRN1 can be suppressed by overexpression of a novel geneYCG1, which is homologous to anotherXenopus condensin subunit, XCAP-G. Overexpression ofSMC2, a gene necessary for chromosome condensation, and a homologue of the XCAP-E condensin, does not suppress brn1, pointing to functional specialization of components of the condensin complex.


2021 ◽  
Vol 134 (23) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Joanna Wenda is first author on ‘ Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans’, published in JCS. Joanna is a PhD student (in the process of graduating) in the lab of Florian Steiner at Department of Molecular Biology, University of Geneva, Geneva, Switzerland, investigating chromatin and cell biology, specifically centromere maintenance and mitotic chromosome formation.


Sign in / Sign up

Export Citation Format

Share Document