Intracellular fibres in cultured cells: analysis by scanning and transmission electron microscopy and by SDS-polyacrylamide gel electrophoresis

1978 ◽  
Vol 31 (1) ◽  
pp. 369-392
Author(s):  
J.A. Trotter ◽  
B.A. Foerder ◽  
J.M. Keller

The 3-dimensional structure of the fibrous cytoskeleton of 3T3 cells was examined by scanning electron microscopy of cells extracted with the non-ionic detergent Triton X-100. Detergent-extracted cells consist of the nucleus and an extensive system of fibres, the largest of which correspond to stress fibres visible by phase-contrast microscopy. The system of fibres, which is coterminous with the borders of the native cell, remains firmly adherent to the substratum. The major fibres branch into smaller fibrils which appear to end by ravelling out into fine filaments that constitute a matted network in a plane very close to that of the substratum. In the nuclear region all the major fibres pass over the top of the nucleus, where they may also branch into a system of fine fibrils. Thin-section transmission electron microscopy in conjunction with heavy meromyosin treatment of extracted cells shows the fibres to be composed of native F-actin. Intermediate filaments are also present, and are prominent in the matted network, together with actin filaments. The major proteins of the residue are identified by SDS-polyacrylamide gel electrophoresis as actin, a 56000 Dalton peptide, and histones. Also present are myosin heavy chain, peptides of 225,000 and 250,000, and minor bands at 60,000 and 94,000 Daltons. The non-ionic detergent extracts 70% of the cellular protein, including 50% of the actin and 75% of the myosin. The Triton-insoluble fraction of 3T3 cells appears to constitute, in addition to the nucleus, a stable cytoskeletal system, composed largely of contractile proteins and 10-nm filaments, which functions in maintenance of cell shape, in substratum adhesion, and in positioning the nucleus within the cell.

Parasitology ◽  
1997 ◽  
Vol 115 (1) ◽  
pp. 47-55 ◽  
Author(s):  
P. BEATTIE ◽  
K. GULL

Scanning and transmission electron microscopy of Trypanosoma congolense epimastigotes attached to a plastic substratum shows them to elaborate a complex flagellum filament system and plaque with a highly organized structure. Non-ionic detergent extraction of these cells shows that the resulting cytoskeletons remain attached to the plaque. The subpellicular corset of microtubules can be removed by salt or Ca+2 treatment leaving the axoneme, paraflagellar rod, associated filaments and the plaque. Neither of these treatments therefore removed the plaque-associated material from the substratum. Analysis of these fractions by SDS–polyacrylamide gel electrophoresis reveals an abundant 70 kDa protein that is highly enriched in the salt extracted ‘minimal plaque’ structures and appears likely to be a major constituent of this structure. These studies reveal that the complex filament and microtubule systems of the cytoskeleton involved the attachment of trypanosomes to substrata and have established a method of biochemical fractionation of the structures and components involved.


2013 ◽  
Vol 1504 ◽  
Author(s):  
Kristian Frank ◽  
Andre Wichmann ◽  
Arne Wittstock ◽  
Marcus Bäumer ◽  
Lutz Mädler ◽  
...  

ABSTRACTNanoporous gold is a material with many possible applications e.g. in catalysts, sensors and electrode materials. We studied the functionalization of the nanoporous gold with TiO2 particles. Aiming at the low temperature oxidation of CO, the nanoporous gold can be coated with TiO2 in order to enhance catalytic activity. Structure and distribution of the TiO2 on the gold surface are important structural features, which were investigated by transmission electron microscopy. The preparation of the porous gold was tested with focused ion beam - preparation, conventional Ar+ ion beam preparation of nanoporous gold embedded in epoxy and ultramicrotome preparation of nanoporous gold embedded in epoxy. Considering the beam damage on the structure and the contamination of the surface, ultramicrotome preparation turned out to be the best solution. It was shown, that the gold ligaments are abundantly covered by approximately 5 nm TiO2 particles. The determination of the largest lattice fringe distance in high resolution mode revealed that the crystalline nanoparticles consist of the anatase phase. The spatial Ti distribution was measured with energy filtered transmission electron microscopy. Scanning transmission electron microscopy tomography was applied to reconstruct the three-dimensional structure of the gold coated with TiO2 particles.


2019 ◽  
Vol 48 (12) ◽  
pp. 3914-3921 ◽  
Author(s):  
Bole Yu ◽  
Thomas W. Rees ◽  
Jiewen Liang ◽  
Chengzhi Jin ◽  
Yu Chen ◽  
...  

The DNA interaction properties of four Ru(ii) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives were investigated by spectral titration, gel electrophoresis (GAR), dynamic light scattering (DLS), zeta potential, atomic force microscopy (AFM), and transmission electron microscopy (TEM).


2008 ◽  
Vol 1144 ◽  
Author(s):  
Han Sung Kim ◽  
Yoon Myung ◽  
Chang Hyun Kim ◽  
Seung Yong Bae ◽  
Jae-Pyoung Ahn ◽  
...  

ABSTRACTElectron tomography and high-resolution transmission electron microscopy were used to characterize the unique three-dimensional structures of helical or zigzagged GaN, ZnGa2O4 and Zn2SnO4 nanowires. The helical GaN nanowires adopt a helical structure that consists of six equivalent <0-111> growth directions with the axial [0001] direction. The ZnGa2O4 nanosprings have four equivalent <011> growth directions with the [001] axial direction. The zigzagged Zn2SnO4 nanowires consisted of linked rhombohedrons structure having the side edges matched to the <011> direction, and the [111] axial direction.


Sign in / Sign up

Export Citation Format

Share Document