The role of cell swelling and haemolysis in Sendai virus-induced cell fusion and in the diffusion of incorporated viral antigens

1980 ◽  
Vol 42 (1) ◽  
pp. 153-167
Author(s):  
S. Knutton ◽  
T. Bachi

The role of the haemolytic activity of Sendai virus in cell-cell fusion has been examined in monolayers of human erythrocytes and erythrocyte ghosts fused with either haemolytic or non-haemolytic virus. Morphological observations indicate that cell swelling and haemolysis is a distinct event in cell-cell fusion irrespective of whether it is virally induced or, in the case of non-haemolytic virus, experimentally induced. Osmotic swelling appears to be the driving force by which cells which have established sites of membrane fusion expand such sites to form poly-erythrocytes. Immunofluorescent labelling of viral antigens incorporated into the erythrocyte membrane as a result of viral envelope-cell fusion indicates that diffusion of antigens in the plane of the membrane is restricted in intact erythrocytes and resealed erythrocyte ghosts but not in haemolysed erythrocytes or unsealed ghosts. A perturbation of the erythrocyte membrane resulting from osmotic lysis appears to form a prerequisite for the lateral diffusion of viral elements.

1979 ◽  
Vol 36 (1) ◽  
pp. 85-96
Author(s):  
S. Knutton

The fusion of human erythrocytes with non-haemolytic ‘1-day’ Sendai virus has been studied by electron microscopy. The mechanism of viral envelope-cell fusion is the same as that described previously for haemolytic ‘3-day’ Sendai virus except that fusion is frequently arrested at an initial stage when 2 segments of smooth linear viral membrane fuse and become incorporated into the erythrocyte membrane. After longer periods of incubation at 37 degrees C, in addition to many partly fused virus particles, long (up to 4 micrometer) lengths of smooth linear viral membrane are seen within the erythrocyte membrane which arise by linear aggregation of shorter (approximately 0.25 micrometer long) segments of smooth linear membrane derived from individual fused viral envelopes. Cell-Cell fusion, as a result of the fusion of a viral envelope with 2 adjacent erythrocytes also occurs but, in the absence of cell swelling, fusion is arrested at this stage with cells joined by one (or more) small cytoplasmic bridges. Typical fused cells are produced if such cells are swollen with hypotonic buffer. These observations provide further evidence that membrane fusion and cell swelling are distinct events in cell fusion and that cell swelling is the driving force both for completing the incorporation of the viral envelope into the cell membrane and for expanding cells connected by small cytoplasmic bridges to form spherical fused cells. Little lateral diffusion of viral envelope components occurs in the absence of cell swelling; in fact, some aggregation of components occurs. Comparison with previous studies using haemolytic ‘3-day’ Sendai virus suggests that virally induced cell swelling perturbs membrane structure so as to allow the rapid lateral diffusion of integrated viral envelope components.


1980 ◽  
Vol 43 (1) ◽  
pp. 103-118
Author(s):  
S. Knutton

The membrane fusion and cell swelling stages of Sendai virus-mediated cell-cell fusion have been studied by thin-section and freeze-fracture electron microscopy. Sites of membrane fusion have been detected in human erythrocytes arrested at the membrane fusion stage of cell fusion and in virtually all cases a fused viral envelope or envelope components has been identified thus providing further direct evidence that cell-viral envelope-cell bridge formation is the membrane fusion event in Sendai virus-induced cell fusion. Radial expansion of a single virus bridge connecting 2 cells is sufficient to produce a fused cell. Membrane redistribution which occurs during this cell swelling stage of the fusion process is often accompanied by the formation of a system of membrane tubules in the plane of expansion of the virus bridge. The tubules originate from points of fusion between the bridging virus envelope and the erythrocyte membrane and also expand radially as cells swell. Ultimately membrane rupture occurs and the tubules appear to break down as small vesicles. When previously observed in cross-sectioned cells these membrane tubules were interpreted as sites of direct membrane fusion. The present study indicates that this interpretation is incorrect and shows that the tubules are generated subsequent to membrane fusion when 2 cells connected by a virus bridge are induced to swell. A mechanism to explain the formation of this system of membrane tubules is proposed.


1977 ◽  
Vol 28 (1) ◽  
pp. 179-188
Author(s):  
S. Knutton ◽  
D. Jackson ◽  
M. Ford

Fusion of erythrocytes and HeLa cells with Sendai and Newcastle disease viruses has been studied by scanning electron microscopy. Most virus particles are spherical but vary in diameter from approximately 200 to approximately 600 nm. At 4 degrees C virus particles bind randomly to the cell surface and at high cell densities cross-linking of adjacent cells by virus particles results in cell agglutination. Cell-cell fusion takes place when the agglutinated cell suspension is warmed to 37 degrees C. Fusion is initiated at sites of cell-cell contact and is accompanied in all cases by cell swelling. In the case of suspension HeLa cells, virally mediated cell swelling involves an ‘unfolding’ of cell surface microvilli and results in the formation of smooth-surfaced single or fused cells. With erythrocytes, swelling results in haemolysis. There is a dramatic reduction in the numbers of virus particles bound to cells following fusion.


1982 ◽  
Vol 206 (3) ◽  
pp. 671-674 ◽  
Author(s):  
Maurice B. Hallett ◽  
Pinhas Fuchs ◽  
Anthony K. Campbell

1. Sendai virus caused a large increase in the concentration of free Ca2+ within human erythrocyte ghosts detected by the Ca2+-activated photoprotein obelin. 2. The increase in intracellular [Ca2+] preceded fusion. However, fusion could also be observed in the absence of a detectable rise in intracellular free [Ca2+]. 3. It was concluded that the increase in intracellular free [Ca2+] was not an absolute requirement for cell fusion, but may be necessary to produce fusion at the maximum rate.


2013 ◽  
Vol 12 (4) ◽  
pp. 117-126 ◽  
Author(s):  
Yuichirou Harada ◽  
Keiichi Yoshida ◽  
Natsuko Kawano ◽  
Kenji Miyado
Keyword(s):  

2003 ◽  
Vol 8 (4) ◽  
pp. 463-470 ◽  
Author(s):  
Stephen Jenkinson ◽  
David C. Mc Coy ◽  
Sandy A. Kerner ◽  
Robert G. Ferris ◽  
Wendell K. Lawrence ◽  
...  

The initial event by which M-tropic HIV strains gain access to cells is via interaction of the viral envelope protein gp120 with the host cell CCR5 coreceptor and CD4. Inhibition of this event reduces viral fusion and entry into cells in vitro. The authors have employed BacMam baculovirus-mediated gene transduction to develop a cell/cell fusion assay that mimics the HIV viral/cell fusion process and allows high-throughput quantification of this fusion event. The assay design uses human osteosarcoma (HOS) cells stably transfected with cDNAs expressing CCR5, CD4, and long terminal repeat (LTR)-luciferase as the recipient host cell. An HEK-293 cell line transduced with BacMam viral constructs to express the viral proteins gp120, gp41, tat, and rev represents the virus. Interaction of gp120 with CCR5/CD4 results in the fusion of the 2 cells and transfer of tat to the HOS cell cytosol; tat, in turn, binds to the LTR region on the luciferase reporter and activates transcription, resulting in an increase in cellular luciferase activity. In conclusion, the cell/cell fusion assay developed has been demonstrated to be a robust and reproducible high-throughput surrogate assay that can be used to assess the effects of compounds on gp120/CCR5/CD4-mediated viral fusion into host cells.


2002 ◽  
Vol 1 (5) ◽  
pp. 811-822 ◽  
Author(s):  
Mingliang Zhang ◽  
Daniel Bennett ◽  
Scott E. Erdman

ABSTRACT Fungal adhesins represent a large family of serine/threonine-rich secreted glycoproteins. Adhesins have been shown to play roles in heterotypic and homotypic cell-cell adhesion processes, morphogenetic pathways and invasive/pseudohyphal growth, frequently in response to differentiation cues. Here we address the role of the Saccharomyces cerevisiae mating-specific adhesin Fig2p. Cells lacking FIG2 possess a variety of mating defects that relate to processes involving the cell wall, including morphogenetic defects, cell fusion defects, and alterations in agglutination activities. We found that mating-specific morphogenetic defects caused by the absence of FIG2 are suppressible by increased external osmolarity and that, during mating, fig2Δ cells display reduced viability relative to wild-type cells. These defects result from alterations in signaling activated by the mating and cell integrity pathways. Finally, we show that fig2Δ zygotes also have defects in zygotic spindle positioning that are osmoremedial, whereas the requirements for FIG2 in normal cell-cell agglutination and cell fusion during mating are insensitive to changes in the extracellular osmotic environment. We conclude that FIG2 performs distinct functions in the mating cell wall that are separable with respect to their ability to be suppressed by changes in external osmolarity and that a fundamental role of FIG2 in mating cells is the maintenance of cell integrity.


2014 ◽  
Vol 207 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Nah-Young Shin ◽  
Hyewon Choi ◽  
Lynn Neff ◽  
Yumei Wu ◽  
Hiroaki Saito ◽  
...  

Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.


Sign in / Sign up

Export Citation Format

Share Document