fungal adhesins
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Niimrod Golan ◽  
Sergei Schwartz Perov ◽  
Meytal Landau ◽  
Peter N Lipke

Candida Als family adhesins mediate adhesion to biological and abiotic substrates, as well as fungal cell aggregation and fungal-bacterial co-aggregation. The activity of at least two family members, Als5 and Als1, is dependent on amyloid-like protein aggregation that is initiated by shear force. Each Als adhesin has a ~300-residue N-terminal Ig-like/invasin region. The following 108-residue, low complexity, threonine-rich (T) domain unfolds under shear to expose a critical amyloid-forming segment 322SNGIVIVATTRTV334 at the interface between the Ig-like/invasin domain 2 and the T domain of Candida albicans Als5. Amyloid prediction programs identified six potential amyloidogenic sequences in the Ig/invasin region and three others in the T domain of C. albicans Als5. Peptides derived from four of these sequences formed fibrils that bound thioflavin T, the amyloid indicator dye, and three of these revealed atomic-resolution structures of cross-b spines. These are the first atomic-level structures for fungal adhesins. One of these segments, from the T domain, revealed kinked b-sheets, similarly to LARKS (Low-complexity, Amyloid-like, Reversible, Kinked segments) found in human functional amyloids. Based on the cross-b structures in Als proteins, we use evolutionary arguments to identify functional amyloidogenic sequences in other fungal adhesins. Thus, cross-b structures are often involved in fungal pathogenesis and potentially in antifungal therapy.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1013
Author(s):  
Peter N. Lipke ◽  
Marion Mathelié-Guinlet ◽  
Albertus Viljoen ◽  
Yves F. Dufrêne

Amyloid structures assemble through a repeating type of bonding called “cross-β”, in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell–cell adhesion.


2020 ◽  
Vol 401 (12) ◽  
pp. 1389-1405
Author(s):  
Lars-Oliver Essen ◽  
Marian Samuel Vogt ◽  
Hans-Ulrich Mösch

AbstractSelective adhesion of fungal cells to one another and to foreign surfaces is fundamental for the development of multicellular growth forms and the successful colonization of substrates and host organisms. Accordingly, fungi possess diverse cell wall-associated adhesins, mostly large glycoproteins, which present N-terminal adhesion domains at the cell surface for ligand recognition and binding. In order to function as robust adhesins, these glycoproteins must be covalently linkedto the cell wall via C-terminal glycosylphosphatidylinositol (GPI) anchors by transglycosylation. In this review, we summarize the current knowledge on the structural and functional diversity of so far characterized protein families of adhesion domains and set it into a broad context by an in-depth bioinformatics analysis using sequence similarity networks. In addition, we discuss possible mechanisms for the membrane-to-cell wall transfer of fungal adhesins by membrane-anchored Dfg5 transglycosidases.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Peter N. Lipke ◽  
Caleen Ramsook ◽  
Melissa C. Garcia-Sherman ◽  
Desmond N. Jackson ◽  
Cho X. J. Chan ◽  
...  

We tell of a journey that led to discovery of amyloids formed by yeast cell adhesins and their importance in biofilms and host immunity. We begin with the identification of the adhesin functional amyloid-forming sequences that mediate fiber formation in vitro. Atomic force microscopy and confocal microscopy show 2-dimensional amyloid “nanodomains” on the surface of cells that are activated for adhesion. These nanodomains are arrays of adhesin molecules that bind multivalent ligands with high avidity. Nanodomains form when adhesin molecules are stretched in the AFM or under laminar flow. Treatment with anti-amyloid perturbants or mutation of the amyloid sequence prevents adhesion nanodomain formation and activation. We are now discovering biological consequences. Adhesin nanodomains promote formation and maintenance of biofilms, which are microbial communities. Also, in abscesses within candidiasis patients, we find adhesin amyloids on the surface of the fungi. In both human infection and a Caenorhabditis elegans infection model, the presence of fungal surface amyloids elicits anti-inflammatory responses. Thus, this is a story of how fungal adhesins respond to extension forces through formation of cell surface amyloid nanodomains, with key consequences for biofilm formation and host responses.


PLoS ONE ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. e9695 ◽  
Author(s):  
Jayashree Ramana ◽  
Dinesh Gupta

2009 ◽  
Vol 9 (3) ◽  
pp. 405-414 ◽  
Author(s):  
Aaron T. Frank ◽  
Caleen B. Ramsook ◽  
Henry N. Otoo ◽  
Cho Tan ◽  
Gregory Soybelman ◽  
...  

ABSTRACT Tandem repeat (TR) regions are common in yeast adhesins, but their structures are unknown, and their activities are poorly understood. TR regions in Candida albicans Als proteins are conserved glycosylated 36-residue sequences with cell-cell aggregation activity (J. M. Rauceo, R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke, Eukaryot. Cell 5:1664–1673, 2006). Ab initio modeling with either Rosetta or LINUS generated consistent structures of three-stranded antiparallel β-sheet domains, whereas randomly shuffled sequences with the same composition generated various structures with consistently higher energies. O- and N-glycosylation patterns showed that each TR domain had exposed hydrophobic surfaces surrounded by glycosylation sites. These structures are consistent with domain dimensions and stability measurements by atomic force microscopy (D. Alsteen, V. Dupres, S. A. Klotz, N. K. Gaur, P. N. Lipke, and Y. F. Dufrene, ACS Nano 3:1677–1682, 2009) and with circular dichroism determination of secondary structure and thermal stability. Functional assays showed that the hydrophobic surfaces of TR domains supported binding to polystyrene surfaces and other TR domains, leading to nonsaturable homophilic binding. The domain structures are like “classic” subunit interaction surfaces and can explain previously observed patterns of promiscuous interactions between TR domains in any Als proteins or between TR domains and surfaces of other proteins. Together, the modeling techniques and the supporting data lead to an approach that relates structure and function in many kinds of repeat domains in fungal adhesins.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Caleen B Ramsook ◽  
Gregory Soybelman ◽  
Raymond Fung ◽  
Peter N Lipke
Keyword(s):  

2002 ◽  
Vol 1 (5) ◽  
pp. 811-822 ◽  
Author(s):  
Mingliang Zhang ◽  
Daniel Bennett ◽  
Scott E. Erdman

ABSTRACT Fungal adhesins represent a large family of serine/threonine-rich secreted glycoproteins. Adhesins have been shown to play roles in heterotypic and homotypic cell-cell adhesion processes, morphogenetic pathways and invasive/pseudohyphal growth, frequently in response to differentiation cues. Here we address the role of the Saccharomyces cerevisiae mating-specific adhesin Fig2p. Cells lacking FIG2 possess a variety of mating defects that relate to processes involving the cell wall, including morphogenetic defects, cell fusion defects, and alterations in agglutination activities. We found that mating-specific morphogenetic defects caused by the absence of FIG2 are suppressible by increased external osmolarity and that, during mating, fig2Δ cells display reduced viability relative to wild-type cells. These defects result from alterations in signaling activated by the mating and cell integrity pathways. Finally, we show that fig2Δ zygotes also have defects in zygotic spindle positioning that are osmoremedial, whereas the requirements for FIG2 in normal cell-cell agglutination and cell fusion during mating are insensitive to changes in the extracellular osmotic environment. We conclude that FIG2 performs distinct functions in the mating cell wall that are separable with respect to their ability to be suppressed by changes in external osmolarity and that a fundamental role of FIG2 in mating cells is the maintenance of cell integrity.


Sign in / Sign up

Export Citation Format

Share Document