The effects of spectinomycin and ethidium bromide on the synthesis of organelle rRNA and on ultrastructure in Ochromonas danica

1980 ◽  
Vol 43 (1) ◽  
pp. 119-136
Author(s):  
H. Smith-Johannsen ◽  
D. Fromson ◽  
S.P. Gibbs

The effects of 24-h exposure to spectinomycin (100 microgram/ml) and ethidium bromide (1 microgram/ml) on the accumulation of chloroplast and mitochondrial rRNAs and on organelle ultrastructure were studied in greening cells of Ochromonas danica. Cells treated with ethidium bromide for 24 h divide at the same rate as controls but contain less than one third the normal amount of mitochondrial rRNA. Ultrastructural observations showed that these cells contain only 10% the number of mitochondrial ribosomes found in controls as well as fewer mitochondrial cristae. Ethidium bromide has no effect on chloroplast ultrastructure in Ochromonas. Greening cells treated with spectinomycin grow at close to control rates but contain 30–40% less chloroplast rRNA than do controls. Electron microscopy showed that spectinomycin disrupts the organization of chloroplast membranes and reduces the number of chloroplast ribosomes by 30%. Under these conditions, spectinomycin has no effect on mitochondrial rRNA or ultrastructure. Since spectinomycin is a specific inhibitor of translation on 70S ribosomes, these results are consistent with the possibility that at least some chloroplast ribosomal proteins are synthesized in the chloroplast of Ochromonas.

2012 ◽  
Vol 30 (2) ◽  
pp. 310-314 ◽  
Author(s):  
Felipe S. Barreto ◽  
Ronald S. Burton

Abstract Rapid evolution of mitochondrial DNA (mtDNA) places intrinsic selective pressures on many nuclear genes involved in mitochondrial functions. Mitochondrial ribosomes, for example, are composed of mtDNA-encoded ribosomal RNAs (rRNAs) and a set of more than 60 nuclear-encoded ribosomal proteins (mRP) distinct from the cytosolic RPs (cRP). We hypothesized that the rapid divergence of mt-rRNA would result in rapid evolution of mRPs relative to cRPs, which respond to slowly evolving nuclear-encoded rRNA. In comparisons of rates of nonsynonymous and synonymous substitutions between a pair of divergent populations of the copepod Tigriopus californicus, we found that mRPs showed elevated levels of amino acid changes relative to cRPs. This pattern was equally strong at the interspecific level, between three pairs of sister species (Nasonia vitripennis vs. N. longicornis, Drosophila melanogaster vs. D. simulans, and Saccharomyces cerevisae vs. S. paradoxus). This high rate of mRP evolution may result in intergenomic incompatibilities between taxonomic lineages, and such incompatibilities could lead to dysfunction of mitochondrial ribosomes and the loss of fitness observed among interpopulation hybrids in T. californicus and interspecific hybrids in other species.


1972 ◽  
Vol 52 (3) ◽  
pp. 598-614 ◽  
Author(s):  
Heidi Smith-Johannsen ◽  
Sarah P. Gibbs

The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica. Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation. During the first 12 hr in the light, chlorophyll synthesis is inhibited by 93%, the formation of new thylakoid membranes is reduced by 91%, and the synthesis of chloroplast ribosomes is inhibited by 81%. Other chloroplast-associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endoplasmic reticulum. CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal proteins are synthesized on cytoplasmic ribosomes.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

AbstractRibosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


2021 ◽  
Author(s):  
Hauke S. Hillen ◽  
Elena Lavdovskaia ◽  
Franziska Nadler ◽  
Elisa Hanitsch ◽  
Andreas Linden ◽  
...  

Ribosome biogenesis is an essential process that requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. In particular, maturation of the peptidyl transferase center (PTC), the catalytic core of the ribosome, is mediated by universally conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial ribosomal large subunit (mtLSU) using a combination of endogenous complex purification, in vitro reconstitution and cryo-electron microscopy (cryo-EM). Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Subsequent addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch by releasing MTERF4-NSUN4 and GTPBP5 accompanied by the progression to a near-mature PTC state. In addition, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results define the molecular basis of dynamic GTPase-mediated PTC maturation during mitochondrial ribosome biogenesis and provide a framework for understanding step-wise progression of PTC folding as a critical quality control checkpoint in all translation systems.


2021 ◽  
Author(s):  
Philipp Milkereit ◽  
Gisela Pöll ◽  
Michael Pilsl ◽  
Joachim Griesenbeck ◽  
Herbert Tschochner

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.


1988 ◽  
Vol 89 (2) ◽  
pp. 243-252
Author(s):  
L.M. Stoilov ◽  
J.S. Zlatanova ◽  
A.P. Vassileva ◽  
M.G. Ivanchenko ◽  
C.P. Krachmarov ◽  
...  

Plant nuclei have been studied with respect to the three-dimensional structure of DNA. Nucleoids derived from nuclei by non-ionic detergent and high salt treatment were analysed by sedimentation in a series of sucrose gradients containing increasing amounts of the intercalating agent ethidium bromide. In addition the nucleoid sedimentation behaviour was investigated following gamma irradiation. The results show that plant DNA is supercoiled, as is the DNA from the other eukaryotes studied, and contains approximately the same concentration of superhelical turns but probably relatively fewer DNA superhelical loops. The plant nuclear populations in all cases studied give rise to two distinct nucleoid bands. These have been characterized by electron microscopy and by their DNA and protein content. The possible origin of the two bands is discussed.


1982 ◽  
Vol 2 (3) ◽  
pp. 293-301
Author(s):  
R A Padgett ◽  
G M Wahl ◽  
G R Stark

Two adjacent fragments of genomic DNA spanning the gene for CAD, which encodes the first three enzymes of UMP biosynthesis, were cloned from a mutant Syrian hamster cell line containing multiple copies of this gene. The mutant was selected for resistance to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, the second enzyme in the pathway. The sizes and positions of about 37 intervening sequences within the 25-kilobase CAD gene were mapped by electron microscopy, and the locations of the 5' and 3' ends of the 7.9-kilobase CAD mRNA were established by electron microscopy and by other hybridization methods. The coding sequences are small (100 to 400 bases), as are most of the intervening sequences (50 to 300 bases). However, there are also several large intervening sequences of up to 5,000 bases each. Two small cytoplasmic polyadenylated RNAs are transcribed from a region just beyond the 5' end of the CAD gene, and their abundance reflects the degree of gene amplification.


Sign in / Sign up

Export Citation Format

Share Document