Relation of cytoplasmic calcium to contractility in Physarum polycephalum

1982 ◽  
Vol 53 (1) ◽  
pp. 37-48 ◽  
Author(s):  
R. Kuroda ◽  
H. Kuroda

In a dumbbell-shaped plasmodium of Physarum polycephalum showing active shuttle streaming Ca was precipitated with potassium pyroantimonate (K[Sb(OH)6]), and the distribution of Ca between the cytoplasm and cellular organelles, especially vacuoles, was examined by electron microscopy. The contracting half-mass, where many empty vacuoles were present, was rich in the small Ca precipitates located in the cytoplasm. The relaxing half-mass, where many Ca-containing vacuoles were present, was poor in the cytoplasmic Ca precipitates. One half-mass of a dumbbell-shaped plasmodium was treated with Ca ionophore, X-537A, and its effect on the motive force for endoplasmic streaming and the distribution of Ca was investigated. The motive force was increased by X-537A, but the period of shuttle streaming was not changed. X-537A also induced a significant increase in the number of the cytoplasmic Ca precipitates in the X-537A-treated contracting half-mass, so that the asymmetry of the distribution of cytoplasmic Ca precipitates was enhanced. A large portion of the vacuoles were empty in the contracting half-mass, and Ca-containing in the relaxing one as in the case of the untreated plasmodium.

1980 ◽  
Vol 44 (1) ◽  
pp. 75-85
Author(s):  
R. Kuroda ◽  
H. Kuroda

The plasmodium of Physarum polycephalum contained 15.3 mmol Ca/kg fresh weight of sample, 11.8 mmol Mg/kg, 24.5 mmol K/kg and 1.4 mmol Na/kg. When the plasmodium was starved of food, the Ca content increased gradually up to 71.9 mmol/kg during 5 days of starvation. The concentration of other elements changed only slightly. The endoplasm contained 23.0 mmol Ca/kg, 12.6 mmol Mg/kg, 26.6 mmol K/kg and 1.7 mmol Na/kg, but these contents changed only slightly during starvation. The Ca, Mg, K and Na contents of the slime and the soluble fraction were also determined. In order to clarify where the accumulated Ca was localized, Ca in the plasmodium was precipitated with potassium pyroantimonate and examined by electron microscopy. In the starved plasmodium, the vacuoles which contained the electron-opaque precipitates and were located in the ectoplasm increased in number, compared with the unstarved plasmodium. At the same time the large electron-opaque granules in the extracellular slime increased in number. The electron-opaque precipitates were identified as Ca pyroantimonate by its susceptibility to removal by chelation with ethyleneglycol bis (beta-aminoethyl ether) N, N, N', N'-tetraacetic acid (EGTA) and X-ray microprobe analysis.


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


2009 ◽  
Vol 19 (01) ◽  
pp. 105-127 ◽  
Author(s):  
ANDREW ADAMATZKY

Plasmodium of Physarum polycephalum spans sources of nutrients and constructs varieties of protoplasmic networks during its foraging behavior. When the plasmodium is placed on a substrate populated with sources of nutrients, it spans the sources with protoplasmic network. The plasmodium optimizes the network to deliver efficiently the nutrients to all parts of its body. How exactly does the protoplasmic network unfold during the plasmodium's foraging behavior? What types of proximity graphs are approximated by the network? Does the plasmodium construct a minimal spanning tree first and then add additional protoplasmic veins to increase reliability and through-capacity of the network? We analyze a possibility that the plasmodium constructs a series of proximity graphs: nearest-neighbour graph (NNG), minimum spanning tree (MST), relative neighborhood graph (RNG), Gabriel graph (GG) and Delaunay triangulation (DT). The graphs can be arranged in the inclusion hierarchy (Toussaint hierarchy): NNG ⊆ MST ⊆ RNG ⊆ GG ⊆ DT . We aim to verify if graphs, where nodes are sources of nutrients and edges are protoplasmic tubes, appear in the development of the plasmodium in the order NNG → MST → RNG → GG → DT , corresponding to inclusion of the proximity graphs.


1974 ◽  
Vol 16 (1) ◽  
pp. 23-37
Author(s):  
K. E. WOHLFARTH-BOTTERMANN

Plasmodia of Physarum polycephalum grown on agar or filter paper and fed with rolled oats as food or with a partially defined medium were morphologically analysed in the living state and after fixation. Observation of the living plasmodium growing on agar reveals plasmalemma indentations in the outer regions of protoplasmic strands, which were studied in more detail by phase-contrast microscopy of unstained 1-µm sections. Plasmodia fixed and embedded in situ, i.e. in close contact to their substrate, exhibit an extensive system of plasmalemma invaginations as characteristic constituents throughout all regions. In plasmodial strands measuring between 40 µm and 1.5 mm in diameter and involved in shuttle streaming, the plasmalemma invaginations are found within the outer ectoplasmic wall. Rounded-up parts of this branched extracellular labyrinth limit the endoplasmic core engaged in the mass transport of protoplasm by shuttle streaming. Despite this clearcut borderline, the central endoplasmic core and the ectoplasmic cortex are connected by occasional protoplasmic bridges. The extracellular phase within the ectoplasmic regions of the strands can be interpreted either as a result of plasmalemma invaginations from the outer border of the strand, or as a consequence of pseudopodial-like processes originating from the central core and extending into the surrounding medium. The invagination system provides an extensive enlargement of the surface area within the multinucleate protoplasmic mass, probably important for food absorption, excretion processes and motility phenomena. In thick protoplasmic strands with diameters between 0.2 and 1.5 mm, there is an intimate connexion between the actomyosin fibrils and the invagination system. The fibrils are attached to the plasmalemma invaginations and/or run parallel to the invaginated plasmalemma sheets. The close relations between the invagination system and actomyosin fibrils will be described in detail in a subsequent paper.


Author(s):  
Richard Mayne ◽  
David Patton ◽  
Ben de Lacy Costello ◽  
Andrew Adamatzky ◽  
Rosemary Camilla Patton

The plasmodium of Physarum polycephalum is a large single cell visible with the naked eye. When inoculated on a substrate with attractants and repellents the plasmodium develops optimal networks of protoplasmic tubes which span sites of attractants (i.e. nutrients) yet avoid domains with a high nutrient concentration. It should therefore be possible to program the plasmodium towards deterministic adaptive transformation of internalised nano- and micro-scale materials. In laboratory experiments with magnetite nanoparticles and glass micro-spheres coated with silver metal the authors demonstrate that the plasmodium of P. polycephalum can propagate the nano-scale objects using a number of distinct mechanisms including endocytosis, transcytosis and dragging. The results of the authors’ experiments could be used in the development of novel techniques targeted towards the growth of metallised biological wires and hybrid nano- and micro-circuits.


1965 ◽  
Vol 25 (1) ◽  
pp. 139-150 ◽  
Author(s):  
Jack Maniloff ◽  
Harold J. Morowitz ◽  
Russell J. Barrnett

Thin-section electron microscopy, together with isolation of cellular organelles by differential centrifugation and chemical analysis, has been used to investigate the ultrastructure of the avian pleuropneumonia-like organism A5969. Each cell (approximate diameter 5500 A) was surrounded by a 150 A plasma membrane. In the center of the cell was an unbounded area, granular in appearance and containing the cell's DNA. The periphery of the cell contained granules of several different sizes and densities. The most dense particles (150 A) corresponded to the 78S ribosomes. These particles exhibited two predominant arrangements: (a) sometimes they showed cubic packing; (b) most arrays, however, were consistent with cylindrical arrangements of approximately 50 particles. Bundles of up to 18 arrays were observed. Structured blebs have been found protruding from the surface of log phase cells.


Sign in / Sign up

Export Citation Format

Share Document