Displacement of Valine From Intact Sea-Urchin Eggs by Exogenous Amino Acids

1968 ◽  
Vol 3 (4) ◽  
pp. 515-527
Author(s):  
J. PIATIGORSKY ◽  
A. TYLER

Unfertilized and fertilized eggs of the sea urchin Lytechinus pictus were preloaded with [14C]valine and exposed to individual solutions of each of the twenty ‘coded’ [12C]amino acids in artificial sea water. After 1 h incubation the amount of radioactivity in the medium was determined. The radioactivity was effectively displaced by most of the other neutral [12C]amino acids that are known to compete with valine for uptake. A chromatographic test with fertilized eggs showed the displaced radioactivity to be [14C]valine and not some metabolic product. Addition of acidic, basic or some neutral amino acids that are known to be poor inhibitors of valine uptake did not cause significant quantities of label to appear in the medium. For the unfertilized eggs, the concentration of acid-soluble label remained many hundreds of times greater in the egg fluid than in the sea water. Tests indicated that efflux of [14C]valine and subsequent competition for re-entry is a primary factor responsible for the displacement phenomenon. That this may not be the sole factor is suggested by the fact that some amino acids that are known to be powerful inhibitors of valine uptake were found to be only weak displacers of [14C]valine. Neither [14C]arginine nor [14C]glutamic acid were displaced in significant amounts from preloaded unfertilized or fertilized eggs by any of the tested [12C]amino acids. Attempts were made to utilize the displacement of [12C]valine to elevate the incorporation of [14C]valine and of other labelled amino acids into protein by intact eggs. Unfertilized and fertilized eggs were pretreated with related [12C]amino acids and then exposed to [14C]valine or a mixture of [14C]amino acids. The results varied in the different tests, ranging from no significant increase to 2-fold.

Development ◽  
1953 ◽  
Vol 1 (3) ◽  
pp. 261-262
Author(s):  
Sven Hörstadius

Dr. I. Joan Lorch, of King's College, London, and I have made some experiments on sea-urchin eggs with desoxynucleic acids (DNA) prepared from sperms of several sea-urchin species by Professor Erwin Chargaff, of Columbia University, New York. Unfertilized eggs did not react when put into a solution of DNA in sea-water. Injection of a small amount of DNA dissolved in Callan's solution had the following consequences. If the DNA did not mix with the cytoplasm but remained as a distinct droplet, the egg could be fertilized. The droplet moved slowly towards the surface and ran out of the egg. This sometimes only occurred after several cleavages. Such eggs developed normally. If, on the other hand, the DNA mixed with the cytoplasm the egg became activated. A fertilization membrane was raised. The surface layer in dark field changed in colour from yellow to white as is the case upon fertilization.


2000 ◽  
Vol 6 (S2) ◽  
pp. 966-967
Author(s):  
Amitabha Chakrabarti ◽  
Heide Schatten

Cortical granules are specialized Golgi-derived membrane-bound secretory granules that are located beneath the plasma membrane in unfertilized sea urchin eggs. Upon fertilization cortical granules discharge in a reaction induced by calcium and release their contents between the plasma membrane and a thin vitelline layer that lines the plasma membrane. Microvilli at the plasma membrane elongate incorporting cortical granule membranes during elongation. The vitelline layer elevates and becomes the egg's fertilization coat that hardens and serves as physical block to polyspermy. While we do not understand the precise mechanisms that participate in cortical granule discharge it is believed that actin plays a role in this process. Because actin and calcium metabolism is affected in aging cells we investigated if cortical granule secretion is affected in aging sea urchin eggs.Lytechinus pictus eggs were obtained by intracoelomic injection of 0.5M KCI to release the eggs into sea water at 23°C.


1988 ◽  
Vol 252 (1) ◽  
pp. 257-262 ◽  
Author(s):  
I Crossley ◽  
K Swann ◽  
E Chambers ◽  
M Whitaker

We investigated the contribution of external calcium ions to inositol phosphate-induced exocytosis in sea urchin eggs. We show that: (a) inositol phosphates activate eggs of the sea urchin species Lytechinus pictus and Lytechinus variegatus independently of external calcium ions; (b) the magnitude and duration of the inositol phosphate induced calcium changes are independent of external calcium; (c) in calcium-free seawater, increasing the volume of inositol trisphosphate solution injected decreased the extent of egg activation; (d) eggs in calcium-free sea water are more easily damaged by microinjection; microinjection of larger volumes increased leakage from eggs pre-loaded with fluorescent dye. We conclude that inositol phosphates do not require external calcium ions to activate sea urchin eggs. This is entirely consistent with their role as internal messengers at fertilization. The increased damage caused to eggs in calcium-free seawater injected with large volumes may allow the EGTA present in the seawater to enter the egg and chelate any calcium released by the inositol phosphates. This may explain the discrepancy between this and earlier reports.


1971 ◽  
Vol 50 (2) ◽  
pp. 516-528 ◽  
Author(s):  
Rudolf A. Raff ◽  
Gerald Greenhouse ◽  
Kenneth W. Gross ◽  
Paul R. Gross

Studies employing colchicine binding, precipitation with vinblastine sulfate, and acrylamide gel electrophoresis confirm earlier proposals that Arbacia punctulata and Lytechinus pictus eggs and embryos contain a store of microtubule proteins. Treatment of 150,000 g supernatants from sea urchin homogenates with vinblastine sulfate precipitates about 5% of the total soluble protein, and 75% of the colchicine-binding activity. Electrophoretic examination of the precipitate reveals two very prominent bands. These have migration rates identical to those of the A and B microtubule proteins of cilia. These proteins can be made radioactive at the 16 cell stage and at hatching by pulse labeling with tritiated amino acids. By labeling for 1 hr with leucine-3H in early cleavage, then culturing embryos in the presence of unlabeled leucine, removal of newly synthesized microtubule proteins from the soluble pool can be demonstrated. Incorporation of labeled amino acids into microtubule proteins is not affected by culturing embryos continuously in 20 µg/ml of actinomycin D. Microtubule proteins appear, therefore, to be synthesized on "maternal" messenger RNA. This provides the first protein encoded by stored or "masked" mRNA in sea urchin embryos to be identified.


1983 ◽  
Vol 61 (1) ◽  
pp. 175-189
Author(s):  
R. Kuriyama ◽  
G.G. Borisy

Conditions that induce the formation of asters in unfertilized sea-urchin eggs have been investigated. Monasters were formed by treatment of eggs with acidic or basic sea-water, or procaine- or thymol-containing sea-water. A second treatment step, incubation with D2O-containing, ethanol-containing or hypertonic sea-water induced multiple cytasters. The number and size of cytasters varied according to the concentration of agents and duration of the first and second treatments, and also upon the species of eggs and the season in which the eggs were obtained. Generally, a longer second treatment or a higher concentration of the second medium resulted in a higher number of cytasters per egg. Asters were isolated and then examined by light and electron microscopy. Isolated monasters apparently lacked centrioles, whereas cytasters obtained from eggs undergoing the two-step treatment contained one or more centrioles. Up to eight centrioles were seen in a single aster; the centrioles appeared to have been produced during the second incubation. Centrospheres prepared from isolated asters retained the capacity to nucleate the formation of microtubules in vitro as assayed by light and electron microscopy. Many microtubules radiated from the centre of isolated asters, whether they contained centrioles or not. This observation is consistent with many other reports that microtubule-organizing centres need not contain centrioles.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


1951 ◽  
Vol 34 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Anna Monroy Oddo ◽  
Maria Esposito

In the eggs of Arbacia lixula and Paracentrotus lividus an uptake of K occurs during the first 10 minutes following fertilization. Between 10 and 40 minutes K is then released. Both in Arbacia and in Paracentrotus the minimum point of the curve coincides with the nuclear streak stage. A maximum loss of 25 per cent in Arbacia and 20 per cent in Paracentrotus with respect to the amount present in the unfertilized eggs has been found. From 40 minutes up to 1 hour K undergoes a further increase and when the first cleavage sets in the same amount of K is present as in the unfertilized eggs. By treating the eggs with K-free artificial sea water it has been established that about 60 per cent of the K content of the eggs is in a non-diffusible condition. Also under such conditions the eggs when fertilized are able to take up even the very small amount of K present in the medium that was released by them prior to fertilization.


1954 ◽  
Vol 31 (2) ◽  
pp. 208-217
Author(s):  
MARTYNAS YČAS

1. Activity corresponding to phosphoglucomutase, phosphohexoisomerase, aldolase, triosephosphate dehydrogenase, enolase and lactic dehydrogenase has been demonstrated in homogenates prepared from unfertilized sea-urchin eggs (Strongylocentrotus purpuratus and Lytechinus pictus). 2. The presence of cytochromes a and b1 has been confirmed. These cytochromes sediment in a relatively low centrifugal field. 3. No cytochrome c could be demonstrated, although cytochrome c is both reduced and oxidized by homogenates, and addition of cytochrome c increases the endogenous respiration and oxidation of succinate. 4. These results support the view that the usual glycolytic pathway operates in the sea-urchin egg and is the principal route of oxidation of carbohydrate.


1970 ◽  
Vol 52 (2) ◽  
pp. 455-468
Author(s):  
R. PRESLEY ◽  
P. F. BAKER

1. A method is described for the direct counting of male pronuclei in recently fertilized sea-urchin eggs. 2. Using this method, fertilization rate determinations were made to compare 30% artificial sea water (A.S.W.), isotonic KCl, sea water containing lauryl sulphate, calcium-free and magnesium-free A.S.W. containing EDTA, and sea water containing uranyl nitrate, as agents blocking fertilization but permitting further development of previously fertilized eggs. 3. 30% A.S.W. was found to be less satisfactory than the other agents, lacking instant effect, and tending to promote polyspermy. The other agents all gave sigmoid rate curves, that of uranyl nitrate lagging 15-25 sec. behind the others. 4. Evidence was found that uranyl nitrate acts at a later stage in fertilization than the other agents. 5. Sigmoid rate curves were found, except with 30% A.S.W., when eggs with the bulk of the jelly coat removed, and nicotine-treated eggs, were fertilized. 6. Analysis of sperm distribution among eggs from samples fertilized for more than 40 sec. confirmed that re-fertilization takes place at a lower rate than primary fertilization. 7. The processes blocked by KCl and uranyl nitrate were found to precede the cortical responses to fertilization, and the termination of nicotine sensitivity.


Sign in / Sign up

Export Citation Format

Share Document