Attachment of sponge cells to collagen substrata: effect of a collagen assembly factor

1985 ◽  
Vol 79 (1) ◽  
pp. 271-285
Author(s):  
B. Diehl-Seifert ◽  
B. Kurelec ◽  
R.K. Zahn ◽  
A. Dorn ◽  
B. Jericevic ◽  
...  

Collagen, isolated from the sponge Geodia cydonium in the absence of denaturing agents, had the typical amino acid composition and was associated with the carbohydrates galactose and glucose. The resulting individual fibrils with a diameter of 23 nm, displayed a 19.5 nm periodicity with one intraperiod band. A collagen assembly factor (CAF) was identified in and partially purified from the extracellular space. The CAF reacted with antibodies against intact Geodia cells but not with antibodies against Geodia lectin and Geodia aggregation factor. In the presence of the CAF, the collagen fibrils reconstituted collagen bundles in an ordered sequence of events, which were followed by electron-microscopical and biochemical methods. Bundle formation was not dependent on the presence of the homologous lectin, glycoconjugates or aggregation factor. Homologous cells (Geodia archaeocytes) were determined to attach only to those Geodia collagen substrates that contained CAF. The attachment of these cells did not require fibronectin or Geodia lectin. Homologous glycoconjugates or NaOH-treated collagen inhibited cell attachment. Collagen from the sponge Chondrosia reniformis, even in the presence of Geodia CAF, was no appropriate substrate for Geodia cell attachment. Whether collagen is a component of cell-matrix interactions in sponge systems also in vivo is discussed.

1979 ◽  
Vol 38 (1) ◽  
pp. 267-281
Author(s):  
S.L. Schor ◽  
J. Court

The attachment of cells to collagen has been reported previously to require the presence of serum and the particular serum protein involved in this process, variously known as CIG, CAP or fibronectin, has been isolated. This conclusion that cell attachment to collagen requires serum (or more precisely, fibronectin) is based on experiments measuring the kinetics of cell attachment to films of collagen. We have measured the kinetics of attachment of HeLa and attachment to films of collagen-containing substrata under a variety of experimental conditions and present evidence that the serum-dependent mechanism of cell attachment described by others is actually only the case for films of denatured collagen, while cell attachment to native collagen fibres occurs by a different, serum-independent, mechanism. The possible relevance of these findings to cell-matrix interactions in vivo is discussed.


1998 ◽  
Vol 111 (8) ◽  
pp. 1127-1135 ◽  
Author(s):  
A.J. Messent ◽  
D.S. Tuckwell ◽  
V. Knauper ◽  
M.J. Humphries ◽  
G. Murphy ◽  
...  

In this paper we show that collagenase-3 cleavage of type I collagen has a marked effect on alpha2beta1 integrin-mediated interactions with the collagen fragments generated. Isolated alpha2beta1 integrin and alpha2 integrin A-domain were found to bind to both native collagen and native 3/4 fragment and, to a lesser degree, native 1/4 fragment. Whole integrin and integrin A-domain binding were lost after heat denaturation of the collagen fragments. At physiological temperature, cell adhesion to triple-helical 3/4 fragment via alpha2beta1 integrin was still possible; however, no alpha2beta1 integrin-mediated adhesion to the 1/4 fragment was observed. Unwinding of the collagen fragment triple helices by heating to physiological temperatures prior to adsorption to plastic tissue culture plates resulted in total abrogation of HT1080 cell attachment to either fragment. These results provide significant evidence in support of a role for matrix-metalloproteinase cleavage of the extracellular matrix in modifying cell-matrix interactions.


2000 ◽  
Vol 20 (14) ◽  
pp. 5208-5215 ◽  
Author(s):  
X. Z. Huang ◽  
J. F. Wu ◽  
R. Ferrando ◽  
J. H. Lee ◽  
Y. L. Wang ◽  
...  

ABSTRACT Members of the integrin family of adhesion receptors mediate both cell-cell and cell-matrix interactions and have been shown to play vital roles in embryonic development, wound healing, metastasis, and other biological processes. The integrin α9β1 is a receptor for the extracellular matrix proteins osteopontin and tenacsin C and the cell surface immunoglobulin vascular cell adhesion molecule-1. This receptor is widely expressed in smooth muscle, hepatocytes, and some epithelia. To examine the in vivo function of α9β1, we have generated mice lacking expression of the α9 subunit. Mice homozygous for a null mutation in the α9 subunit gene appear normal at birth but develop respiratory failure and die between 6 and 12 days of age. The respiratory failure is caused by an accumulation of large volumes of pleural fluid which is rich in triglyceride, cholesterol, and lymphocytes. α9 −/− mice also develop edema and lymphocytic infiltration in the chest wall that appears to originate around lymphatics. α9 protein is transiently expressed in the developing thoracic duct at embryonic day 14, but expression is rapidly lost during later stages of development. Our results suggest that the α9 integrin is required for the normal development of the lymphatic system, including the thoracic duct, and that α9 deficiency could be one cause of congenital chylothorax.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Satoru Ken Nishimoto ◽  
Miyako Nishimoto

Background. Matrix Gla protein (MGP) is a vitamin K-dependent, extracellular matrix protein. MGP is a calcification inhibitor of arteries and cartilage. However MGP is synthesized in many tissues and is especially enriched in embryonic tissues and in cancer cells. The presence of MGP in those instances does not correlate well with the calcification inhibitory role. This study explores a potential mechanism for MGP to bind to matrix proteins and alter cell matrix interactions.Methods. To determine whether MGP influences cell behavior through interaction with fibronectin, we studied MGP binding to fibronectin, the effect of MGP on fibronectin mediated cell attachment and spreading and immunolocalized MGP and fibronectin.Results. First, MGP binds to fibronectin. The binding site for MGP is in a specific fibronectin fragment, called III1-C or anastellin. The binding site for fibronectin is in a MGP C-terminal peptide comprising amino acids 61–77. Second, MGP enhances cell attachment and cell spreading on fibronectin. MGP alone does not promote cell adhesion. Third, MGP is present in fibronectin-rich regions of tissue sections.Conclusions. MGP binds to fibronectin. The presence of MGP increased cell-fibronectin interactions.


2002 ◽  
Vol 223 (4) ◽  
pp. 497-516 ◽  
Author(s):  
Janine M. Prince ◽  
Teresa C.M. Klinowska ◽  
Emma Marshman ◽  
Emma T. Lowe ◽  
Ulrike Mayer ◽  
...  

2020 ◽  
Author(s):  
Edi Meco ◽  
W. Sharon Zheng ◽  
Anahita H. Sharma ◽  
Kyle J. Lampe

AbstractDemyelinating injuries and diseases, like multiple sclerosis, affect millions of people worldwide. Oligodendrocyte precursor cells (OPCs) have the potential to repair demyelinated tissue because they can both self-renew and differentiate into oligodendrocytes (OLs), the myelin producing cells of the central nervous system (CNS). Cell-matrix interactions impact OPC differentiation into OLs, but the process is not fully understood. Biomaterial hydrogel systems help to elucidate cell-matrix interactions because they can mimic specific properties of native CNS tissue in an in vitro setting. We investigated whether OPC maturation into OLs is influenced by interacting with a urokinase plasminogen activator (uPA) degradable extracellular matrix (ECM). uPA is a proteolytic enzyme that is transiently upregulated in the developing rat brain, with peak uPA expression correlating with an increase in myelin production in vivo. OPC-like cells isolated through the Mosaic Analysis with Double Marker technique (MADM OPCs) produced low molecular weight uPA in culture. MADM OPCs were encapsulated into two otherwise similar elastin-like protein (ELP) hydrogel systems: one that was uPA degradable and one that was non-degradable. Encapsulated MADM OPCs had similar viability, proliferation, and metabolic activity in uPA degradable and non-degradable ELP hydrogels. Expression of OPC maturation-associated genes, however, indicated that uPA degradable ELP hydrogels promoted MADM OPC maturation although not sufficiently for these cells to differentiate into OLs.Graphical Abstract – For table of contents only


Oncogene ◽  
2003 ◽  
Vol 22 (24) ◽  
pp. 3680-3684 ◽  
Author(s):  
Vincenzo M Varallo ◽  
Bing Siang Gan ◽  
Shannon Seney ◽  
Douglas C Ross ◽  
James H Roth ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 40 ◽  
Author(s):  
Xiaoju Wang ◽  
Qingbo Wang ◽  
Chunlin Xu

Nanocelluloses have emerged as a catalogue of renewable nanomaterials for bioink formulation in service of 3D bioprinting, thanks to their structural similarity to extracellular matrices and excellent biocompatibility of supporting crucial cellular activities. From a material scientist’s viewpoint, this mini-review presents the key research aspects of the development of the nanocellulose-based bioinks in 3D (bio)printing. The nanomaterial properties of various types of nanocelluloses, including bacterial nanocellulose, cellulose nanofibers, and cellulose nanocrystals, are reviewed with respect to their origins and preparation methods. Different cross-linking strategies to integrate into multicomponent nanocellulose-based bioinks are discussed in terms of regulating ink fidelity in direct ink writing as well as tuning the mechanical stiffness as a bioactive cue in the printed hydrogel construct. Furthermore, the impact of surface charge and functional groups on nanocellulose surface on the crucial cellular activities (e.g., cell survival, attachment, and proliferation) is discussed with the cell–matrix interactions in focus. Aiming at a sustainable and cost-effective alternative for end-users in biomedical and pharmaceutical fields, challenging aspects such as biodegradability and potential nanotoxicity of nanocelluloses call for more fundamental comprehension of the cell–matrix interactions and further validation in in vivo models.


Sign in / Sign up

Export Citation Format

Share Document