Characterization of the fission yeast cdc10+ protein that is required for commitment to the cell cycle

1989 ◽  
Vol 92 (1) ◽  
pp. 51-56 ◽  
Author(s):  
V. Simanis ◽  
P. Nurse

We have used antiserum raised against a beta-galactosidase-cdc10+ fusion protein to identify the protein product of the cdc10+ start gene of Schizosaccharomyces pombe. This gene is required for progress through the G1 phase of the cell cycle and for activating processes such as the increase in histone mRNA level in preparation for S phase. The protein has an apparent molecular weight of 87,000 and is phosphorylated on multiple serine residues. The protein remains phosphorylated throughout the mitotic cell cycle and shows no significant steady-state changes in level. The antiserum has also detected a protein similar in size to p87cdc10 in human cells.

2019 ◽  
Author(s):  
Yu-Ying Phoebe Hsieh ◽  
Vasso Makrantoni ◽  
Daniel Robertson ◽  
Adèle L Marston ◽  
Andrew W Murray

AbstractDifferent members of the same protein family often perform distinct cellular functions. How much are these differing functions due to changes in a protein’s biochemical activity versus changes in other proteins? We asked how the budding yeast, Saccharomyces cerevisiae, evolves when forced to use the meiosis-specific kleisin, Rec8, instead of the mitotic kleisin, Scc1, during the mitotic cell cycle. This perturbation impairs sister chromosome linkage and reduces reproductive fitness by 45%. We evolved 15 populations for 1750 generations, substantially increasing their fitness, and analyzed their genotypes and phenotypes. We found no mutations in Rec8, but many populations had mutations in the transcriptional mediator complex, cohesin-related genes, and cell cycle regulators that induce S phase. These mutations improve sister chromosome cohesion and slow genome replication in Rec8-expressing cells. We conclude that changes in known and novel partners allow proteins to improve their ability to perform new functions.


2005 ◽  
Vol 25 (15) ◽  
pp. 6330-6337 ◽  
Author(s):  
Jordi Malapeira ◽  
Alberto Moldón ◽  
Elena Hidalgo ◽  
Gerald R. Smith ◽  
Paul Nurse ◽  
...  

ABSTRACT The meiotic cell cycle is modified from the mitotic cell cycle by having a premeiotic S phase which leads to high levels of recombination, a reductional pattern of chromosome segregation at the first division, and a second division with no intervening DNA synthesis. Cyclin-dependent kinases are essential for progression through the meiotic cell cycle, as for the mitotic cycle. Here we show that a fission yeast cyclin, Rem1, is present only during meiosis. Cells lacking Rem1 have impaired meiotic recombination, and Rem1 is required for premeiotic DNA synthesis when Cig2 is not present. rem1 expression is regulated at the level of both transcription and splicing, with Mei4 as a positive and Cig2 a negative factor of rem1 splicing. This regulation ensures the timely appearance of the different cyclins during meiosis, which is required for the proper progression through the meiotic cell cycle. We propose that the meiosis-specific B-type cyclin Rem1 has a central role in bringing about progression through meiosis.


1993 ◽  
Vol 13 (4) ◽  
pp. 2113-2125
Author(s):  
N Grandin ◽  
S I Reed

We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.


1984 ◽  
Vol 43 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Leland H. Johnston ◽  
Anthony L. Johnson

SUMMARYThe occurrence of induced recombination in the mitotic cell cycle in yeast has been analysed using conditional cell-cycle mutants held at the restrictive temperature. The strains used were heteroallelic atgalland assaying for functional galactokinase shortly after irradiation (Johnston, 1982) allowed an unambiguous determination of the cell cycle stages in which recombination could occur. Recombination was observed in most strains, including those with thecdc36mutation, defective in ‘start’; thecdc4, 7anddbf4mutations which arrest cells in G1; thedbf1, 2andcdc6mutations affecting S phase;cdc16andcdc17which block cells in G2 and alsocdc14and15which arrest cells in ‘late nuclear division’. Recombination can therefore occur within each of the major phases of the yeast cell cycle. This analysis has also revealed that thecdc8mutation results in a defect in induced mitotic recombination.


1993 ◽  
Vol 13 (4) ◽  
pp. 2113-2125 ◽  
Author(s):  
N Grandin ◽  
S I Reed

We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.


The fission yeast Schizosaccharomyces pombe has been used to identify gene functions required for the cell to become committed to the mitotic cell cycle and to initiate the processes leading to chromosome replication in S-phase. Two gene functions cdc 2 and cdc 10 must be executed for the cell to traverse ‘start’ and proceed from G1 into S-phase. Before the completion of these two functions the cell is in an uncommitted state and can undergo alternative developmental fates such as conjugation. A third gene, sucl, has also been identified whose product may interact directly with that of cdc 2 at ‘start’. The molecular functions of the genes involved in the completion of ‘ start ’ have been investigated. The cdc 2 gene has been shown to be a protein kinase, suggesting that phosphorylation may be involved in the control over the transition from G1 into S-phase. The biochemical functions of the cdc 10 and suc 1 gene products have not yet been elucidated. A control at ‘start’ has also been shown to exist in the budding yeast Saccharomyces cerevisiae . Traverse o f‘start’ requires the execution of the CDC28 gene function. The cdc2 and CDC28 gene products (lower-case letters represent genes of Schizosaccharomyces pombe , and capital letters genes of Saccharomyces cerevisiae ) are functionally homologous, suggesting that the processes involved in traverse o f‘start’ are highly conserved. An analogous control may also exist in the G1 period of mammalian cells, suggesting that the ‘ start ’ control step, after which cells become committed to the mitotic cell cycle, may have been conserved through evolution.


1991 ◽  
Vol 260 (3) ◽  
pp. C581-C588 ◽  
Author(s):  
A. Bobik ◽  
A. Grooms ◽  
P. J. Little ◽  
E. J. Cragoe ◽  
S. Grinpukel

The reported effects of alterations in Na-H exchange activity on mitogenesis are variable and appear dependent on the cell type examined. We examined the effects of reductions in ethylisopropylamiloride (EIPA)-sensitive pH-regulating mechanisms including Na-H exchange and alterations in intracellular pH (pHi) on the growth characteristics of rat aortic smooth muscle cells (RASM) cultured in serum-containing bicarbonate-buffered medium. Exposure of RASM replicating in bicarbonate-containing medium to the Na-H exchange inhibitors EIPA, dimethylamiloride (DMA), or amiloride (A) attenuated their replication rate. The order of potency of the inhibitors (EIPA greater than DMA much greater than A) was similar to their documented effects on Na-H exchange activity and to their order of potency for inhibiting recovery from CO2-induced acidosis in these cells. Reductions in pHi induced by lowering extracellular pH also attenuated the incorporation of [3H]-thymidine into DNA, while increases in pHi were associated with an acceleration in the rate of incorporation of [3H]thymidine into DNA. The effects of the Na-H exchange inhibitors on RASM replication were due to a reduction in the ability of the smooth muscle cells to enter the S phase of the mitotic cell cycle. This appeared predominantly the consequence of effects late within the G1 phase of the cell cycle. Concentrations of EIPA that markedly reduced the ability of RASM to enter S phase and to replicate also attenuated the increase in protein synthesis occurring 6-8 h after exposure to serum.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 113 (3) ◽  
pp. 946-955 ◽  
Author(s):  
Estabelle S. M. Ang ◽  
Nathan J. Pavlos ◽  
Shek Man Chim ◽  
Hao Tian Feng ◽  
Robin M. Scaife ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document