Steps in the morphogenesis of a polarized epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts

1990 ◽  
Vol 95 (1) ◽  
pp. 153-165
Author(s):  
A.Z. Wang ◽  
G.K. Ojakian ◽  
W.J. Nelson

A fundamental aspect in the morphogenesis of a polarized epithelium is the formation of structurally and functionally distinct apical and basal-lateral domains of the plasma membrane. The formation of these membrane domains involves the accumulation of domain-specific proteins and removal of incorrectly localized proteins. The mechanisms involved in these processes are not well understood. We have approached this problem by detailed analysis of the distribution and fate of proteins specific for different membrane domains during reversal of epithelial polarity. In the preceding paper we showed that MDCK cells form multicellular cysts comprising a closed monolayer of polarized cells. The orientation of cell polarity depends upon whether cysts are formed in suspension culture or in a collagen gel. Here, we show that, when fully developed cysts formed in suspension culture are placed in a collagen gel, polarity is rapidly reversed without cell dissociation. We show that during the process of polarity reversal, plasma membrane domains are disassembled by uptake of proteins into cytoplasmic vesicles, followed by protein degradation that probably occurs in lysosomes. The disassembly and assembly of the apical and the basal-lateral membrane domains occur in a sequential order with different kinetics. Our results provide further insights into the establishment of protein specificity of plasma membrane domains in polarized cells.

2002 ◽  
Vol 277 (33) ◽  
pp. 30325-30336
Author(s):  
Daniel Wüstner ◽  
Andreas Herrmann ◽  
Mingming Hao ◽  
Frederick R. Maxfield

2003 ◽  
Vol 278 (22) ◽  
pp. 20389-20394 ◽  
Author(s):  
Lorian C. Hartgroves ◽  
Joseph Lin ◽  
Hanno Langen ◽  
Tobias Zech ◽  
Arthur Weiss ◽  
...  

1989 ◽  
Vol 257 (6) ◽  
pp. F913-F924 ◽  
Author(s):  
R. Bacallao ◽  
L. G. Fine

Information from studies of embryonic nephrons and established renal tubular cell lines in culture can be integrated to derive a picture of how the renal tubule develops and regenerates after acute injury. During development, the formation of a morphologically polarized epithelium from committed nephric mesenchymal cells requires an external signal for mitogenesis and differentiation. Polypeptide growth factors, in some cases mediated through oncogene expression, act in an autocrine or paracrine fashion to stimulate the production of extracellular matrix proteins that probably provide the earliest orientation signal for the cell. Interaction of these proteins with cell surface receptors leads to early organization of the cytoskeletal actin network, which is the major scaffolding for further differentiation and for definition of plasma membrane domains. The formation of cell-cell contacts via specialized adhesion molecules integrates the epithelium into a polarized monolayer and maintains its fence function, i.e., separation of plasma membrane domains. Microtubules probably participate in the delivery of vesicles to specific plasma membrane domains and in the spatial organization of intracellular organelles. Following acute renal injury, this sequence of events appears to be reversed, resulting in partial or complete loss of differentiated features. Regeneration seems to follow the same pattern of sequential differentiation steps as nephrogenesis. The integrity of the epithelium is restored by reestablishing only those stages of differentiation that have been lost. Where cell death occurs, mitogenesis in adjacent cells restores the continuity of the epithelium and the entire sequence of differentiation events is initiated in the newly generated cells.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0154709 ◽  
Author(s):  
Monica Salamone ◽  
Francesco Carfì Pavia ◽  
Giulio Ghersi

1998 ◽  
Vol 9 (3) ◽  
pp. 599-609 ◽  
Author(s):  
Hans de Vries ◽  
Cobi Schrage ◽  
Dick Hoekstra

Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.


Sign in / Sign up

Export Citation Format

Share Document