The protein kinase C inhibitor H-7 activates human neutrophils: effect on shape, actin polymerization, fluid pinocytosis and locomotion

1990 ◽  
Vol 96 (1) ◽  
pp. 99-106
Author(s):  
H.U. Keller ◽  
V. Niggli ◽  
A. Zimmermann ◽  
R. Portmann

The present study demonstrates new properties of H-7. The protein kinase inhibitor H-7 is a potent activator of several neutrophil functions. Stimulation of initially spherical nonmotile neutrophils elicits vigorous shape changes within a few seconds, increases in cytoskeletal actin, altered F-actin distribution, increased adhesiveness and a relatively small increase in pinocytic activity. H-7 has also chemokinetic activities. Depending on the experimental condition, H-7 may elicit or inhibit neutrophil locomotion. It failed to induce chemotaxis. Thus, the response pattern elicited by H-7 is different from that of other leukocyte activators such as chemotactic peptides, PMA or diacylglycerols. The finding that H-7 can elicit shape changes, actin polymerization and pinocytosis suggests that these events can occur without activation of protein kinase C (PKC). PMA-induced shape changes and stimulation of pinocytosis were not inhibited by H-7.

1989 ◽  
Vol 264 (2) ◽  
pp. 357-364 ◽  
Author(s):  
S A McCarthy ◽  
T J Hallam ◽  
J E Merritt

Stimulation of fura-2-loaded human neutrophils with formylmethionyl-leucyl-phenylalanine (FMLP) or ionomycin elevated the cytosolic free Ca2+ concentration, [Ca2+], to a maintained elevated level. Activation of protein kinase C (C-kinase) with phorbol 12-myristate 13-acetate, 4 beta-phorbol 12,13-didecanoate or dioctanoylglycerol caused decreases in [Ca2+]i from this level. 4 alpha-Phorbol didecanoate, which does not activate C-kinase, had no effect. These results confirm previous reports that C-kinase activation decreases neutrophil [Ca2+]i by stimulating removal of Ca2+ from the cytosol. Further experiments showed that activation of C-kinase attenuated the component of the FMLP-stimulated [Ca2+]i rise that was dependent on external Ca2+. C-kinase activation also inhibited FMLP-stimulated entry of the quenching cation, Mn2+, used as an indicator of bivalent-cation entry. In contrast, C-kinase activation caused only a partial inhibition of FMLP-stimulated release of Ca2+ from intracellular stores. 4 alpha-Phorbol didecanoate was ineffective in inhibiting Ca2+ entry, Mn2+ entry and intracellular Ca2+ release. Addition of FMLP also stimulated a decrease in the ionomycin-elevated [Ca2+]i, and this effect was blocked by staurosporine, a protein kinase inhibitor. These results show that, in addition to stimulating Ca2+ efflux, C-kinase activation in neutrophils inhibits FMLP-stimulated entry of bivalent cations, and partially inhibits intracellular release of Ca2+. Further, FMLP itself can modulate [Ca2+]i by activation of C-kinase.


1992 ◽  
Vol 12 (7) ◽  
pp. 3305-3312
Author(s):  
M Izquierdo ◽  
J Downward ◽  
J D Graves ◽  
D A Cantrell

T-lymphocyte activation via the antigen receptor complex (TCR) results in accumulation of p21ras in the active GTP-bound state. Stimulation of protein kinase C (PKC) can also activate p21ras, and it has been proposed that the TCR effect on p21ras occurs as a consequence of TCR regulation of PKC. To test the role of PKC in TCR regulation of p21ras, a permeabilized cell system was used to examine TCR regulation of p21ras under conditions in which TCR activation of PKC was blocked, first by using a PKC pseudosubstrate peptide inhibitor and second by using ionic conditions that prevent phosphatidyl inositol hydrolysis and hence diacylglycerol production and PKC stimulation. The data show that TCR-induced p21ras activation is not mediated exclusively by PKC. Thus, in the absence of PKC stimulation, the TCR was still able to induce accumulation of p21ras-GTP complexes, and this stimulation correlated with an inactivation of p21ras GTPase-activating proteins. The protein tyrosine kinase inhibitor herbimycin could prevent the non-PKC-mediated, TCR-induced stimulation of p21ras. These data indicate that two mechanisms for p21ras regulation coexist in T cells: one PKC mediated and one not. The TCR can apparently couple to p21ras via a non-PKC-controlled route that may involve tyrosine kinases.


1999 ◽  
Vol 277 (3) ◽  
pp. E433-E438 ◽  
Author(s):  
Satoshi Shigematsu ◽  
Keishi Yamauchi ◽  
Kohji Nakajima ◽  
Sachiko Iijima ◽  
Toru Aizawa ◽  
...  

Effects of highd-glucose and insulin on the endothelial cell migration and tubular formation were investigated with the use of ECV304 cells, a clonal human umbilical cord endothelial cell line. Exposure of the cells to highd-glucose resulted in a marked increase in the migration, which was blocked by inhibitors of protein kinase C such as H7 (10 μM) and GF109203X (200 nM). Furthermore, a protein kinase C agonist, phorbol 12-myristate 13-acetate, had an effect similar to that of glucose on ECV304 cells. Glucose stimulation of the migration was additively enhanced by 100 nM insulin, and the insulin effect was found to be unaffected by either PD-98059 or wortmannin, a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase inhibitor and a phosphatidylinositol 3-kinase inhibitor, respectively. Neither did H7 inhibit insulin stimulation of the migration. In contrast, a combination of high d-glucose and insulin, rather than either one alone, promoted tubular formation, which was inhibited by addition of 10 μM PD-98059. Stimulation of ECV304 cells by the combination of highd-glucose and insulin also caused an activation of MAPK, which was again obliterated by the same concentration of PD-98059. In conclusion, human endothelial cell migration and tubular formation are stimulated by highd-glucose and insulin in different ways. In the former reaction, either is effective, a combination of the two results in an additive effect, and activation of protein kinase C is involved. In contrast, tubular formation will only occur in the presence of a combination of highd-glucose and insulin, and MAPK plays an essential role.


2002 ◽  
Vol 11 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Pravit Akarasereenont ◽  
Kitirat Techatraisak ◽  
Athiwat Thaworn ◽  
Sirikul Chotewuttakorn

Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX2 was assessed by measuring the production of 6-keto-prostaglandin F1α in the presence of exogenous arachidonic acids (10 μM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 μg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.


1994 ◽  
Vol 24 (3) ◽  
pp. 621-626 ◽  
Author(s):  
John A. Sullivan ◽  
Janet E. Merritt ◽  
John M. Budd ◽  
Robert F. G. Booth ◽  
Trevor J. Hallam

1988 ◽  
Vol 90 (4) ◽  
pp. 657-666 ◽  
Author(s):  
A. Zimmermann ◽  
P. Gehr ◽  
H.U. Keller

The study shows that diacylglycerols (DAGs) as physiological activators of protein kinase C induce characteristic shape changes in human neutrophil granulocytes. In contrast to chemotactic peptides, which can induce front-tail polarity characterized by a contracted tail and an expanding front, DAGs elicit the formation of non-polar cells with surface projections. These cells exhibit a distinct type of motility characterized by vigorous and continuous shape changes without front-tail polarity and without the unidirectional movement and cytoplasmic streaming seen in polarized cells. In neutrophils exposed to DAGs, F-actin is shifted to the cell periphery and mainly into the surface projections of activated cells. DAGs induce the formation of large intracellular vacuoles in neutrophils producing surface projections, and these vacuoles persist after the cells have reacquired a spherical shape. Combined stimulation of human neutrophils with DAG and fNLPNTL results in a suppression of peptide-induced polarity and the formation of non-polar motile cells resembling those stimulated with DAG alone. These results suggest that the diacylglycerol-protein kinase C pathway may be instrumental in transducing or modulating signals to both the locomotor apparatus and the exocytotic and/or pinocytic system of the cell. Neutrophil stimulation with DAGs thus represents a useful model with which to study further the hypothesis that distinct types of neutrophil shapes and movements are preferentially associated with distinct functions and to characterize signalling pathways.


Sign in / Sign up

Export Citation Format

Share Document