scholarly journals Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle

1986 ◽  
Vol 124 (1) ◽  
pp. 5-13
Author(s):  
J. Golowasch ◽  
A. Kirkwood ◽  
C. Miller

Ca2+-activated K+ channels from rat muscle transverse tubule membranes were inserted into planar phospholipid bilayers, and the activation of these channels by Ca2+ was studied. On the cytoplasmic side of the channel, calcium ions (in the range 10–100 mumol l-1) increase the opening probability of the channel in a graded way. This ‘activation curve’ is sigmoid, with an average Hill coefficient of about 2. Magnesium ions, in the range 1–10 mmol l-1, increase the apparent affinity of the channel for Ca2+ and greatly enhance the sigmoidicity of the Ca2+ activation curve. In the presence of 10 mmol l-1 Mg2+, the Hill coefficient for Ca2+ activation is about 4.5. This effect depends upon Mg2+ concentration but not upon applied voltage. Mg2+ is effective only when added to the cytoplasmic side of the channel. The results argue that this high-conductance, Ca2+-activated K+ channel contains at least six Ca2+-binding sites involved in the activation process.

1987 ◽  
Vol 252 (3) ◽  
pp. F458-F467 ◽  
Author(s):  
G. Frindt ◽  
L. G. Palmer

High conductance, Ca-activated K channels were studied in the apical membrane of the rat cortical collecting tubule (CCT) using the patch-clamp technique. In cell-attached patches the channels were found mainly in the closed state at the spontaneous apical membrane potential. They spent progressively more time in the open state as the pipette potential was made negative relative to the bath. In excised patches these channels had a high selectivity for K over Na and were activated by micromolar concentrations of Ca2+ on the cytoplasmic side of the membrane in a voltage-dependent manner. They had a low conductance to Rb and were blocked by Ba (1-100 microM) from the cytoplasmic side and tetraethylammonium (TEA) (0.2-1 mM) from the luminal side. Block by external TEA and small conductance to Rb were used to investigate the role of these channels in K transport by the isolated perfused rabbit CCT. Ba (2.5 mM), a well-studied blocker of apical K conductance in this segment, hyperpolarized the transepithelial voltage (VT) by 3.7 +/- 0.9 mV when added to the luminal solution of the perfused tubule. Addition of TEA (5 mM) to the luminal solution has no effect on VT. When Na transport was abolished by luminal amiloride, perfusion with 30 mM K (replacing Na) resulted in a lumen-negative VT (18-34 mV). Under these conditions, VT was reduced by 6.0 +/- 1.5 mV by 2.5 mM Ba, whereas TEA had no effect. Perfusion with 30 mM Rb (replacing Na) also caused a lumen-negative VT that was approximately 50% of that observed with 30 mM K. The apical K conductance of the perfused CCT appears to be insensitive to luminal TEA and only modestly selective for K over Rb. This conductance, at least under the conditions of our studies, is probably not mediated by the high conductance Ca-activated K channel.


1988 ◽  
Vol 92 (1) ◽  
pp. 67-86 ◽  
Author(s):  
A Oberhauser ◽  
O Alvarez ◽  
R Latorre

Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.


1998 ◽  
Vol 111 (2) ◽  
pp. 363-379 ◽  
Author(s):  
Izumi Sugihara

Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).


2018 ◽  
Author(s):  
Tanguy Lucas ◽  
Huy Tran ◽  
Carmina Angelica Perez Romero ◽  
Aurélien Guillou ◽  
Cécile Fradin ◽  
...  

AbstractMorphogen gradients provide concentration-dependent positional information along polarity axes. Although the dynamics of establishment of these gradients is well described, precision and noise in the downstream activation processes remain elusive. A simple paradigm to address these questions is the Bicoid morphogen gradient that elicits a rapid step-like transcriptional response in young fruit fly embryos. Focusing on the expression of the main Bicoid target, hunchback (hb), at the onset of zygotic transcription, we used the MS2-MCP approach which combines fluorescent labeling of nascent mRNA with live imaging at high spatial and temporal resolution. Removing 36 putative Zelda binding sites unexpectedly present in the original MS2 reporter, we show that the 750 bp of the hb promoter are sufficient to recapitulate endogenous expression at the onset of zygotic transcription. After each mitosis, in the anterior, expression is turned on to rapidly reach a plateau with all nuclei expressing the reporter. Consistent with a Bicoid dose-dependent activation process, the time period required to reach the plateau increases with the distance to the anterior pole. Remarkably, despite the challenge imposed by frequent mitoses and high nuclei-to-nuclei variability in transcription kinetics, it only takes 3 minutes at each interphase for the MS2 reporter loci to measure subtle differences in Bicoid concentration and establish a steadily positioned and steep (Hill coefficient ~ 7) expression boundary. Modeling based on cooperativity between the 6 known Bicoid binding sites in the hb promoter region and assuming rate limiting concentrations of the Bicoid transcription factor at the boundary is able to capture the observed dynamics of pattern establishment but not the steepness of the boundary. This suggests that additional mechanisms are involved in the steepness of the response.


1996 ◽  
Vol 271 (2) ◽  
pp. C464-C468 ◽  
Author(s):  
Y. G. Kwak ◽  
S. K. Park ◽  
U. H. Kim ◽  
M. K. Han ◽  
J. S. Eun ◽  
...  

Cyclic ADP-ribose (cADPR), an NAD metabolite, has been shown to be a messenger for Ca2+ mobilization from intracellular Ca2+ stores. However, the physiological role of ADP-ribose (ADPR), another metabolite of NAD, is not known. We examined the effects of cADPR and ADPR on the ATP-sensitive K+ channel (KATP) activity in rat ventricular myocytes by use of the inside-out patch-clamp configuration. ADPR, but not cADPR, inhibited the channel activity at micromolar range with an inhibitor constant (Ki) of 38.4 microM. The Hill coefficient was 0.9. ATP inhibited the K+ channel with a Ki of 77.8 microM, and the Hill coefficient was 1.8. Single-channel conductance was not affected by ADPR. These findings strongly suggest that ADPR may act as a regulator of KATP channel activity.


1994 ◽  
Vol 266 (2) ◽  
pp. H590-H596 ◽  
Author(s):  
I. R. Hutcheson ◽  
T. M. Griffith

We have investigated the role of Ca(2+)- and ATP-sensitive K+ channels (KCa and KATP, respectively) in flow- and agonist-stimulated release of endothelium-derived relaxing factor (EDRF). Segments of rabbit abdominal aorta, perfused at constant flow with buffer containing indomethacin, were used as a source of EDRF in cascade bioassay, and responses to endothelium-dependent agonists were studied isometrically in rings of the same tissue in the absence of flow. Apamin, charybdotoxin (ChTX), and tetraethylammonium (TEA) were used to block a variety of low, medium, and high conductance KCa channels, and glibenclamide was used to block KATP channels. The effects of flow pulsatility were studied at pulse frequencies ranging from 0.15 to 9.75 Hz, and time-averaged shear stress was manipulated by adding dextran (80,000 mol wt) to the perfusate to increase its viscosity. Frequency-related EDRF release was maximal at approximately 5 Hz and attenuated by apamin, TEA, and ChTX, but not by glibenclamide. EDRF release stimulated by increased viscosity was attenuated by TEA, ChTX, and glibenclamide, but not by apamin. In marked contrast, EDRF release stimulated by acetylcholine and ATP was unaffected by blockade of either KCa or KATP channels. We conclude that a spectrum of KCa channel subtypes mediates endothelial transduction of the oscillatory component of pulsatile flow and that KATP channels may be additionally involved in the transduction of time-averaged shear stress. In contrast, agonist-stimulated endothelium-dependent relaxation is independent of K+ channel activation in rabbit aorta.


1992 ◽  
Vol 99 (6) ◽  
pp. 841-862 ◽  
Author(s):  
F Markwardt ◽  
G Isenberg

Currents through maxi K+ channels were recorded in inside-out macro-patches. Using a liquid filament switch (Franke, C., H. Hatt, and J. Dudel. 1987. Neurosci, Lett. 77:199-204) the Ca2+ concentration at the tip of the patch electrode ([Ca2+]i) was changed in less than 1 ms. Elevation of [Ca2+]i from less than 10 nM to 3, 6, 20, 50, 320, or 1,000 microM activated several maxi K+ channels in the patch, whereas return to less than 10 nM deactivated them. The time course of Ca(2+)-dependent activation and deactivation was evaluated from the mean of 10-50 sweeps. The mean currents started a approximately 10-ms delay that was attributed to diffusion of Ca2+ from the tip to the K+ channel protein. The activation and deactivation time courses were fitted with the third power of exponential terms. The rate of activation increased with higher [Ca2+]i and with more positive potentials. The rate of deactivation was independent of preceding [Ca2+]i and was reduced at more positive potentials. The rate of deactivation was measured at five temperatures between 16 and 37 degrees C; fitting the results with the Arrhenius equation yielded an energy barrier of 16 kcal/mol for the Ca2+ dissociation at 0 mV. After 200 ms, the time-dependent processes were in a steady state, i.e., there was no sign of inactivation. In the steady state (200 ms), the dependence of channel openness, N.P(o), on [Ca2+]i yielded a Hill coefficient of approximately 3. The apparent dissociation constant, KD, decreased from 13 microM at -50 mV to 0.5 microM at +70 mV. The dependence of N.P(o) on voltage followed a Boltzmann distribution with a maximal P(o) of 0.8 and a slope factor of approximately 39 mV. The results were summarized by a model describing Ca2+- and voltage-dependent activation and deactivation, as well as steady-state open probability by the binding of Ca2+ to three equal and independent sites within the electrical field of the membrane at an electrical distance of 0.31 from the cytoplasmic side.


2006 ◽  
Vol 128 (4) ◽  
pp. 423-441 ◽  
Author(s):  
Weiyan Li ◽  
Richard W. Aldrich

Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K+ channels have suggested that their activation gates may be located near or within the selectivity filter instead. It remains to be determined to what extent the physical location of the gate is conserved across the large K+ channel family. Direct evidence about the location of the gate in large conductance calcium-activated K+ (BK) channels, which are gated by both voltage and ligand (calcium), has been scarce. Our earlier kinetic measurements of the block of BK channels by internal quaternary ammonium ions have raised the possibility that they may lack a cytoplasmic gate. We show in this study that a synthesized Shaker ball peptide (ShBP) homologue acts as a state-dependent blocker for BK channels when applied internally, suggesting a widening at the intracellular end of the channel pore upon gating. This is consistent with a gating-related conformational change at the cytoplasmic end of the pore-lining helices, as suggested by previous functional and structural studies on other K+ channels. Furthermore, our results from two BK channel mutations demonstrate that similar types of interactions between ball peptides and channels are shared by BK and other K+ channel types.


1999 ◽  
Vol 277 (1) ◽  
pp. C43-C50 ◽  
Author(s):  
Joseph I. Kourie

The lipid bilayer technique was used to characterize the Ca2+dependence of a fast K+channel formed by a synthetic 17-amino acid segment [ OaCNP-39-(1–17)] of a 39-amino acid C-type natriuretic peptide ( OaCNP-39) found in platypus ( Ornithorhynchus anatinus) venom ( OaV). The OaCNP-39-(1–17)-formed K+channel was reversibly dependent on 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-buffered cis (cytoplasmic) Ca2+concentration ([Ca2+]cis). The channel was fully active when [Ca2+]ciswas >10−4M and trans (luminal) Ca2+concentration was 1.0 mM, but not at low [Ca2+]cis. The open probability of single channels increased from zero at 1 × 10−6M cisCa2+to 0.73 ± 0.17 ( n = 22) at 10−3M cisCa2+. Channel openings to the maximum conductance of 38 pS were rapidly and reversibly activated when [Ca2+]cis, but not transCa2+concentration ( n = 5), was increased to >5 × 10−4M ( n = 14). Channel openings to the submaximal conductance of 10.5 pS were dominant at ≥5 × 10−4M Ca2+. K+channels did not open when cisMg2+or Sr2+concentrations were increased from zero to 10−3M or when [Ca2+]ciswas maintained at 10−6M ( n = 3 and 2). The Hill coefficient and the inhibition constant were 1 and 0.8 × 10−4M cisCa2+, respectively. This dependence of the channel on high [Ca2+]cissuggests that it may become active under 1) physiological conditions where Ca2+levels are high, e.g., during cardiac and skeletal muscle contractions, and 2) pathological conditions that lead to a Ca2+overload, e.g., ischemic heart and muscle fatigue. The channel could modify a cascade of physiological functions that are dependent on the Ca2+-activated K+channels, e.g., vasodilation and salt secretion.


Sign in / Sign up

Export Citation Format

Share Document