scholarly journals Gating of maxi K+ channels studied by Ca2+ concentration jumps in excised inside-out multi-channel patches (myocytes from guinea pig urinary bladder).

1992 ◽  
Vol 99 (6) ◽  
pp. 841-862 ◽  
Author(s):  
F Markwardt ◽  
G Isenberg

Currents through maxi K+ channels were recorded in inside-out macro-patches. Using a liquid filament switch (Franke, C., H. Hatt, and J. Dudel. 1987. Neurosci, Lett. 77:199-204) the Ca2+ concentration at the tip of the patch electrode ([Ca2+]i) was changed in less than 1 ms. Elevation of [Ca2+]i from less than 10 nM to 3, 6, 20, 50, 320, or 1,000 microM activated several maxi K+ channels in the patch, whereas return to less than 10 nM deactivated them. The time course of Ca(2+)-dependent activation and deactivation was evaluated from the mean of 10-50 sweeps. The mean currents started a approximately 10-ms delay that was attributed to diffusion of Ca2+ from the tip to the K+ channel protein. The activation and deactivation time courses were fitted with the third power of exponential terms. The rate of activation increased with higher [Ca2+]i and with more positive potentials. The rate of deactivation was independent of preceding [Ca2+]i and was reduced at more positive potentials. The rate of deactivation was measured at five temperatures between 16 and 37 degrees C; fitting the results with the Arrhenius equation yielded an energy barrier of 16 kcal/mol for the Ca2+ dissociation at 0 mV. After 200 ms, the time-dependent processes were in a steady state, i.e., there was no sign of inactivation. In the steady state (200 ms), the dependence of channel openness, N.P(o), on [Ca2+]i yielded a Hill coefficient of approximately 3. The apparent dissociation constant, KD, decreased from 13 microM at -50 mV to 0.5 microM at +70 mV. The dependence of N.P(o) on voltage followed a Boltzmann distribution with a maximal P(o) of 0.8 and a slope factor of approximately 39 mV. The results were summarized by a model describing Ca2+- and voltage-dependent activation and deactivation, as well as steady-state open probability by the binding of Ca2+ to three equal and independent sites within the electrical field of the membrane at an electrical distance of 0.31 from the cytoplasmic side.

2002 ◽  
Vol 120 (4) ◽  
pp. 581-597 ◽  
Author(s):  
Tsukasa Gotow ◽  
Takako Nishi

Light-dependent K+ channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268–272) showed that a depolarizing response of the other simple photoreceptor, A-P-1 cell, results from closing of the light-dependent K+ channels that are activated by cGMP. In the cell-attached patch recordings of Ip-2 cells, external artificial seawater (ASW) was replaced with a modified ASW containing 150 mM K+ and 200 mM Mg2+ to suppress any synaptic input and to maintain the membrane potential constant. When Ip-2 cells were equilibrated with this modified ASW, the internal K+ concentration was estimated to be 260 mM. Light-dependent single-channels in the cell-attached patch on these cells were opened by light but scarcely by voltage. After confirming the light-dependent channel activity in the cell-attached patches, an application of cGMP to the excised inside-out patches newly activated a channel that disappeared on removal of cGMP. Open and closed time distributions of this cGMP-activated channel could be described by the sum of two exponents with time constants τo1, τo2 and τc1, τc2, respectively, similar to those of the light-dependent channel. In both the channels, τo1 and τo2 in ms ranges were similar to each other, although τc2 over tens of millisecond ranges was different. τo1, τo2, and the mean open time τo were both independent of light intensity, cGMP concentration, and voltage. In both channels, the open probability increased as the membrane was depolarized, without changing any of τo2 or τo. In both, the reversal potentials using 200- and 450-mM K+-filled pipettes were close to the K+ equilibrium potentials, suggesting that both the channels are primarily K+ selective. Both the mean values of the channel conductance were estimated to be the same at 62 and 91 pS in 200- and 450-mM K+ pipettes at nearly 0 mV, respectively. Combining these findings with those in the above former report, it is concluded that cGMP is a second messenger which opens the light-dependent K+ channel of Ip-2 to cause hyperpolarization, and that the channel is the same as that of A-P-1 closed by light.


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


1994 ◽  
Vol 267 (4) ◽  
pp. F599-F605 ◽  
Author(s):  
W. H. Wang

We have used the patch-clamp technique to study the apical K+ channels in the thick ascending limb (TAL) of the rat kidney. Two types of K+ channels, a low-conductance and an intermediate-conductance K+ channel, were identified in both cell-attached and inside-out patches. We confirmed the previously reported intermediate-conductance K+ channel (72 pS), which is inhibited by millimolar cell ATP, acidic pH, Ba2+, and quinidine (4). We now report a second K+ channel in apical membrane of the TAL. The slope conductance of this low-conductance K+ channel is 30 pS, and its open probability is 0.80 in cell-attached patches. This channel is not voltage dependent, and application of 2 mM ATP in the bath inhibits channel activity in inside-out patches. In addition, 250 microM glyburide, an ATP-sensitive K+ channel inhibitor, blocks channel activity, whereas the same concentration of glyburide has no inhibitory effect on the 72-pS K+ channel. Channel activity of the 30-pS K+ channel decreases rapidly upon excision of patches (channel run down). Application of 0.1 mM ATP and the catalytic subunit of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) restores channel activity. Furthermore, addition of 0.1 mM 8-(4-chlorophenylthio)-cAMP or 50-100 pM vasopressin in the cell-attached patches increases channel activity. In conclusion, two types of K+ channels are present in the apical membrane of TAL of rat kidney, and PKA plays an important role in modulation of the low-conductance K+ channel activity.


1992 ◽  
Vol 100 (3) ◽  
pp. 401-426 ◽  
Author(s):  
M D Ganfornina ◽  
J López-Barneo

Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.


1988 ◽  
Vol 91 (3) ◽  
pp. 317-333 ◽  
Author(s):  
C S Anderson ◽  
R MacKinnon ◽  
C Smith ◽  
C Miller

Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.


1998 ◽  
Vol 111 (4) ◽  
pp. 565-581 ◽  
Author(s):  
Birgit Hirschberg ◽  
James Maylie ◽  
John P. Adelman ◽  
Neil V. Marrion

Small-conductance Ca-activated K+ channels play an important role in modulating excitability in many cell types. These channels are activated by submicromolar concentrations of intracellular Ca2+, but little is known about the gating kinetics upon activation by Ca2+. In this study, single channel currents were recorded from Xenopus oocytes expressing the apamin-sensitive clone rSK2. Channel activity was detectable in 0.2 μM Ca2+ and was maximal above 2 μM Ca2+. Analysis of stationary currents revealed two open times and three closed times, with only the longest closed time being Ca dependent, decreasing with increasing Ca2+ concentrations. In addition, elevated Ca2+ concentrations resulted in a larger percentage of long openings and short closures. Membrane voltage did not have significant effects on either open or closed times. The open probability was ∼0.6 in 1 μM free Ca2+. A lower open probability of ∼0.05 in 1 μM Ca2+ was also observed, and channels switched spontaneously between behaviors. The occurrence of these switches and the amount of time channels spent displaying high open probability behavior was Ca2+ dependent. The two behaviors shared many features including the open times and the short and intermediate closed times, but the low open probability behavior was characterized by a different, long Ca2+-dependent closed time in the range of hundreds of milliseconds to seconds. Small-conductance Ca- activated K+ channel gating was modeled by a gating scheme consisting of four closed and two open states. This model yielded a close representation of the single channel data and predicted a macroscopic activation time course similar to that observed upon fast application of Ca2+ to excised inside-out patches.


1998 ◽  
Vol 112 (2) ◽  
pp. 199-210 ◽  
Author(s):  
Tatyana T. Ivanova-Nikolova ◽  
Emil N. Nikolov ◽  
Carl Hansen ◽  
Janet D. Robishaw

The membrane-delimited activation of muscarinic K+ channels by G protein βγ subunits plays a prominent role in the inhibitory synaptic transmission in the heart. These channels are thought to be heterotetramers comprised of two homologous subunits, GIRK1 and CIR, both members of the family of inwardly rectifying K+ channels. Here, we demonstrate that muscarinic K+ channels in neonatal rat atrial myocytes exhibit four distinct gating modes. In intact myocytes, after muscarinic receptor activation, the different gating modes were distinguished by differences in both the frequency of channel opening and the mean open time of the channel, which accounted for a 76-fold increase in channel open probability from mode 1 to mode 4. Because of the tetrameric architecture of the channel, the hypothesis that each of the four gating modes reflects binding of a different number of Gβγ subunits to the channel was tested, using recombinant Gβ1γ5. Gβ1γ5 was able to control the equilibrium between the four gating modes of the channel in a manner consistent with binding of Gβγ to four equivalent and independent sites in the protein complex. Surprisingly, however, Gβ1γ5 lacked the ability to stabilize the long open state of the channel that is responsible for the augmentation of the mean open time in modes 3 and 4 after muscarinic receptor stimulation. The modal regulation of muscarinic K+ channel gating by Gβγ provides the atrial cells with at least two major advantages: the ability to filter out small inputs from multiple membrane receptors and yet the ability to create the gradients of information necessary to control the heart rate with great precision.


2000 ◽  
Vol 279 (4) ◽  
pp. C1107-C1115 ◽  
Author(s):  
F. S. Walters ◽  
M. Covarrubias ◽  
J. S. Ellingson

We investigated the effects of clinically relevant ethanol concentrations (5–20 mM) on the single-channel kinetics of bovine aortic smooth muscle maxi-K channels reconstituted in lipid bilayers (1:1 palmitoyl-oleoyl-phosphatidylethanolamine: palmitoyl-oleoyl-phosphatidylcholine). Ethanol at 10 and 20 mM decreased the channel open probability ( P o) by 75 ± 20.3% mainly by increasing the mean closed time (+82 to +960%, n = 7). In some instances, ethanol also decreased the mean open time (−40.8 ± 22.5%). The P o-voltage relation in the presence of 20 mM ethanol exhibited a rightward shift in the midpoint of voltage activation (Δ V ½ ≅ 17 mV), a slightly steeper relationship (change in slope factor, Δ k, ≅ −2.5 mV), and a decreased maximum P o (from ∼0.82 to ∼0.47). Interestingly, channels inhibited by ethanol at low Ca2+ concentrations (2.5 μM) were very resistant to ethanol in the presence of increased Ca2+ (≥ 20 μM). Alcohol consumption in clinically relevant amounts may alter the contribution of maxi-K channels to the regulation of arterial tone.


1992 ◽  
Vol 99 (4) ◽  
pp. 591-613 ◽  
Author(s):  
T A Cummings ◽  
S C Kinnamon

The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.


2006 ◽  
Vol 128 (3) ◽  
pp. 317-336 ◽  
Author(s):  
Xue Zhang ◽  
Xuhui Zeng ◽  
Christopher J. Lingle

The mouse Slo3 gene (KCNMA3) encodes a K+ channel that is regulated by changes in cytosolic pH. Like Slo1 subunits responsible for the Ca2+ and voltage-activated BK-type channel, the Slo3 α subunit contains a pore module with homology to voltage-gated K+ channels and also an extensive cytosolic C terminus thought to be responsible for ligand dependence. For the Slo3 K+ channel, increases in cytosolic pH promote channel activation, but very little is known about many fundamental properties of Slo3 currents. Here we define the dependence of macroscopic conductance on voltage and pH and, in particular, examine Slo3 conductance activated at negative potentials. Using this information, the ability of a Horrigan-Aldrich–type of general allosteric model to account for Slo3 gating is examined. Finally, the pH and voltage dependence of Slo3 activation and deactivation kinetics is reported. The results indicate that Slo3 differs from Slo1 in several important ways. The limiting conductance activated at the most positive potentials exhibits a pH-dependent maximum, suggesting differences in the limiting open probability at different pH. Furthermore, over a 600 mV range of voltages (−300 to +300 mV), Slo3 conductance shifts only about two to three orders of magnitude, and the limiting conductance at negative potentials is relatively voltage independent compared to Slo1. Within the context of the Horrigan-Aldrich model, these results indicate that the intrinsic voltage dependence (zL) of the Slo3 closed–open equilibrium and the coupling (D) between voltage sensor movement are less than in Slo1. The kinetic behavior of Slo3 currents also differs markedly from Slo1. Both activation and deactivation are best described by two exponential components, both of which are only weakly voltage dependent. Qualitatively, the properties of the two kinetic components in the activation time course suggest that increases in pH increase the fraction of more rapidly opening channels.


Sign in / Sign up

Export Citation Format

Share Document