scholarly journals Effects of Ionic Environment on Viscosity of Catch Connective Tissue in Holothurian Body Wall

1986 ◽  
Vol 125 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Yutaka Hayashi ◽  
Tatsuo Motokawa

1. The effects of cations (H+, Na+, K+, Ca2+, Mg2+) on the mechanical properties of the catch connective tissue in the dermis of a sea cucumber, Holothuria leucospilota Brandt, were studied. 2. The manipulation of the ionic environment caused rapid (apparent in minutes) and reversible viscosity change. 3. Artificial sea water (ASW) with a high concentration of Ca2+ (50mmol1−1) increased the normal viscosity 9 times; Ca2+-free ASW decreased it to one-tenth. Ca2+ was the only ion which caused a viscosity change whose range was as large as the range of the viscosity distribution of the dermis in ASW. 4. Manipulation of the concentration of other'ions caused an increase in viscosity. An increase of more than five-fold was observed in the following solutions: ASW with acidic (pH4) or basic (pH9, 10) pH; Na+-free ASW whose Na+ was replaced by either sucrose or choline; ASW with high (100 mmol1−1) concentration of K+; ASW with low (0 mmoll−1) or high (250 mmol1−1) concentrations of Mg2+. 5. The dermis contracted in distilled water, although this tissue contained no muscle cells.

1982 ◽  
Vol 99 (1) ◽  
pp. 29-41
Author(s):  
TATSUO MOTOKAWA

1. Tensile tests and creep tests were performed on the dermis of the sea cucumber Stichopus chloronotus (Brandt). 2. Chemical stimulation of the dermis with coelomic fluid of the sea cucumber, or with artificial sea water containing a high concentration of potassium, increased both the elastic stiffness and the viscosity. 3. Methanol extraction of the coelomic fluid revealed two factors: a methanol-soluble factor that stiffens the dermis, and a methanol-insoluble factor that softens it. 4. These factors affected the mechanical properties of other echinoderm connective tissue (the catch apparatus of sea-urchin spine) in a similar way to the holothurian dermis.


1984 ◽  
Vol 109 (1) ◽  
pp. 63-75 ◽  
Author(s):  
TATSUO MOTOKAWA

1. Stress-relaxation tests and creep tests were performed on the body-wall dermis of two sea cucumbers, Actinopyga echinites (Jäger) and Holothuria leucospilota Brandt. 2. These viscoelastic connective tissues had mechanical properties which agreed well with those of a four-element mechanical model composed of two Maxwell elements connected in parallel. 3. The elastic stiffness of the dermis of Actinopyga was 1.7 MPa and that of Holothuria was 042 MPa. 4. The viscosity of the dermis showed great variation of more than two orders. 5. Chemical stimulation with artificial sea water containing 100 mM potassium increased the viscosity but not elasticity. 6. The viscosity change is suggested to be caused by the change in weak (non-covalent) bonds between macromolecules which constitute the dermis.


1911 ◽  
Vol 13 (5) ◽  
pp. 562-570 ◽  
Author(s):  
Alexis Carrel ◽  
Montrose T. Burrows

It may be concluded that the degree of dilution of the culture medium has a marked influence on the rate of growth of splenic tissue. The maximum acceleration was obtained in a medium composed of three volumes of normal plasma and two volumes of distilled water. The growth in this hypotonic plasma was very much larger than in normal plasma. On the contrary, the growth of the spleen in hypertonic plasma was always less than in normal plasma. In other experiments, we found that in diluted plasma there was also an acceleration of the growth of the skin, the heart, and the liver of chickens. The skin of adult frogs also grew more actively in this plasma. The optimum degree of dilution varied according to the nature of the tissues and to the species of the animals. While the plasma containing two fifths distilled water produced the largest growth of splenic tissue, a slightly less diluted medium was more favorable for the liver and the heart, and generally for the skin also. The action of hypertonic plasma varied also in a large measure. While the spleen did not grow at all in the medium containing 0.0124 and 0.0144 sodium chlorid, the skin, on the other hand, could stand a high concentration of the sodium chlorid. Even its growth was activated in media containing 0.0094 and 0.0124 sodium chlorid and was greater than with normal plasma. The spleen of kittens was very easily affected by the changes of the dilution of the plasma, while the skin of the frog presented its best growth in plasma containing one half distilled water. Marked variations in the sensitiveness of tissues to hypertonic and hypotonic media will probably be observed in animals of different species. From these experiments, three conclusions can be drawn: namely, that certain laws of growth, discovered by Loeb, in lower organisms are true also for higher organisms; that normal plasma is not the optimum medium for the growth of tissue; and that each tissue has probably its optimum medium. The growth of the spleen is, without doubt, considerably modified by the variations of the dilution and perhaps of the osmotic tension of the plasma. It is possible then that the influence of osmotic tension, discovered by Loeb, in the growth of certain organisms, is a general law applicable as well to higher forms of life— frogs, cats, and chickens—as to lower organisms—tubularia and sea-urchins. In placing tubularia in different dilutions of sea-water and distilled water, Loeb found that the greatest rate of regeneration was observed when two volumes of distilled water were added to three volumes of sea-water. But fertilized eggs of sea-urchins were more sensitive to the action of hypertonic plasma, and they all died in a dilution of sea-water with two fifths distilled water. If only one fifth distilled water was added to the sea-water they developed normally. We found that the cells of certain tissues of the chicken follow a similar rule, since the maximal growth of the spleen is obtained in plasma containing two fifths distilled water, while other tissues grow better in a less hypotonic medium. Normal plasma is certainly not the ideal medium for the growth of tissues, since slight modifications of the tension, the alkalinity, or the addition of certain inorganic salts to normal plasma, increase the rate of the growth of tissues.


2001 ◽  
Vol 204 (5) ◽  
pp. 849-863 ◽  
Author(s):  
M. Byrne

Evisceration in the dendrochirotid sea cucumber Eupentacta quinquesemita is a whole-body response involving a predictable series of events including muscle contraction and failure of three autotomy structures: (i) the introvert, the dexterous anterior extensible portion of the body wall, (ii) the tendon linking the pharyngeal retractor muscle to the longitudinal body wall muscle and (iii) the intestine-cloacal junction. The autotomy structures are histologically complex, consisting of muscle, nervous and connective tissue. Autotomy resulted from complete loss in the tensility of the connective tissue ground substance. Separation of the autotomy structures was facilitated by muscle contraction. The cell and tissue changes involved with autotomy were documented by microscopic examination of autotomising tissue. Change in the autotomy structures appears to initiate from the peritoneal side with delamination of the peritoneum followed by a wave of disruption as the connective tissue is infiltrated by coelomic fluid. Evisceration and autotomy in E. quinquesemita are neurally controlled, so particular attention was paid to the fate of neuronal elements. Neurosecretory-like processes containing large dense vesicles and axons were present in the connective tissue layers of the autotomy structures in association with extracellular matrix, muscles and neurons. These neuronal elements remained largely intact during autotomy and did not appear to be a source of factors that effect connective tissue change. They may, however, be involved in muscle activity. Holothuroid autotomy structures are completely or partially bathed in coelomic fluid, so there is potential for hormonal or neurosecretory activity using the coelomic fluid as a conduit. Connective tissue change during evisceration appears to be effected or mediated by an evisceration factor present in coelomic fluid that has a direct transmitter-like or neurosecretory-like mode of operation. The final outcome, expulsion of the viscera, is likely to result from a suite of factors that interact in a manner yet to be determined.


Author(s):  
Keizo Negi ◽  
Keizo Negi ◽  
Takuya Ishikawa ◽  
Takuya Ishikawa ◽  
Kenichiro Iba ◽  
...  

Japan experienced serious water pollution during the period of high economic growth in 1960s. It was also the period that we had such damages to human health, fishery and living conditions due to red tide as much of chemicals, organic materials and the like flowing into the seas along the growing population and industries in the coastal areas. Notable in those days was the issues of environment conservation in the enclosed coastal seas where pollutants were prone to accumulate inside due to low level of water circulation, resulting in the issues including red tide and oxygen-deficient water mass. In responding to these issues, we implemented countermeasures like effluent control with the Water Pollution Control Law and improvement/expansion of sewage facilities. In the extensive enclosed coastal seas of Tokyo Bay, Ise Bay and the Seto Inland Sea, the three areas of high concentration of population, we implemented water quality total reduction in seven terms from 1979, reducing the total quantities of pollutant load of COD, TN and TP. Sea water quality hence has been on an improvement trend as a whole along the steady reduction of pollutants from the land. We however recognize that there are differences in improvement by sea area such as red tide and oxygen-deficient water mass continue to occur in some areas. Meanwhile, it has been pointed out that bio-diversity and bio-productivity should be secured through conservation/creation of tidal flats and seaweed beds in the view point of “Bountiful Sea” To work at these challenges, through the studies depending on the circumstances of the water environment in the enclosed coastal seas, we composed “The Policy of Desirable State of 8th TPLCS” in 2015. We have also added the sediment DO into the water quality standard related to the life-environmental items in view of the preservation of aquatic creatures in the enclosed water areas. Important from now on, along the Policy, is to proceed with necessary measures to improve water quality with good considerations of differences by area in the view point of “Beautiful and bountiful Sea”.


1992 ◽  
Vol 25 (11) ◽  
pp. 117-124 ◽  
Author(s):  
N. Watanabe ◽  
S. Sakai ◽  
H. Takatsuki

Examination of individual degradation paths (biodegradation and photolysis) of butyltin compounds (especially tributyltin: TBT) in natural waters was performed. Biodegradation of TBT and dibutyltin (DBT) in an unfiltered sea water in summer is rather fast; their half life is about a week. But pretreatment with glass fiber filter makes the half life of TBT much longer (about 80 days). Photolysis of TBT in sea water by sun light is rapid (half life is about 0.5 days), and faster than in distilled water or in fresh water. Degradation rates of each process for TBT are calculated in various conditions of sea water, and contribution rates are compared. Biodegradation will be the main degradation process in an “SS-rich” area such as a marina, but photolysis will exceed that in a “clean” area. Over all half lives of TBT in sea water vary from 6 days to 127 days considering seasons and presence of SS.


Sign in / Sign up

Export Citation Format

Share Document