Examination for Degradation Paths of Butyltin Compounds in Natural Waters

1992 ◽  
Vol 25 (11) ◽  
pp. 117-124 ◽  
Author(s):  
N. Watanabe ◽  
S. Sakai ◽  
H. Takatsuki

Examination of individual degradation paths (biodegradation and photolysis) of butyltin compounds (especially tributyltin: TBT) in natural waters was performed. Biodegradation of TBT and dibutyltin (DBT) in an unfiltered sea water in summer is rather fast; their half life is about a week. But pretreatment with glass fiber filter makes the half life of TBT much longer (about 80 days). Photolysis of TBT in sea water by sun light is rapid (half life is about 0.5 days), and faster than in distilled water or in fresh water. Degradation rates of each process for TBT are calculated in various conditions of sea water, and contribution rates are compared. Biodegradation will be the main degradation process in an “SS-rich” area such as a marina, but photolysis will exceed that in a “clean” area. Over all half lives of TBT in sea water vary from 6 days to 127 days considering seasons and presence of SS.

1932 ◽  
Vol 7 (1) ◽  
pp. 73-89 ◽  
Author(s):  
WILLIAM REGINALD SAWYER

The spectral absorption of light (350–650 mμ) by pure water and bay of Fundy water was determined by means of a quartz spectrograph, Nicol prisms, and tubes of water of varying lengths up to 5 metres. The sun at noon on clear days was used as the source of radiation, its constancy being checked by means of a pyrheliometer. The tubes and spectrograph were placed in an equatorial mounting and the radiation from the sun controlled by a heliostat mirror. The results in the visible for distilled water agree with those of other workers. There appears to be a surprising difference in the absorption of ultra-violet between distilled water and natural waters. Less than 0.5 per cent of the near ultra-violet was transmitted by 1 metre of one of the samples of sea-water. A number of applications of the above method have been suggested.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


Author(s):  
Elena Kovaleva ◽  
Elena Kovaleva ◽  
Alexander Izhitskiy ◽  
Alexander Izhitskiy ◽  
Alexander Egorov ◽  
...  

Studying of methane formation and distribution in natural waters is important for understanding of biogeochemical processes of carbon cycle, searching for oil and gas sections and evaluation of CH4 emissions for investigations of greenhouse effect. The Black Sea is the largest methane water body on our planet. However, relatively low values of methane concentration (closed to equilibrium with the atmospheric air) are typical of the upper aerobic layer. At the same time, the distribution pattern of CH4 in surface waters of coastal areas is complicated by the influence of coastal biological productivity, continental runoff, bottom sources, hydrodynamic processes and anthropogenic effect. The investigation is focused on the spatial variability of dissolved methane in the surface layer of the sea in coastal regions affected by the continental runoff and anthropogenic pressure. Unique in situ data on methane concentrations were collected along the ship track on 2 sections between Sochi and Gelendzhik (2013, 2014) and 2 sections between Gelendzhik and Feodosia (2015). Overall 170 samples were obtained. Gas-chromatographic analysis of the samples revealed increase of CH4 saturation in the southeastern part of the Crimean shelf and the Kerch Strait area. Such a pattern was apparently caused by the influence of the Azov Sea water spread westward along the Crimean shore from the strait. This work was supported by the Russian Science Foundation, Project 14-50-00095 and the Russian Foundation for Basic Research, Project 16-35-00156 mol_a.


2017 ◽  
Vol 130 (1) ◽  
pp. 479-484 ◽  
Author(s):  
M. M. Mato ◽  
L. M. Casás ◽  
J. L. Legido ◽  
C. Gómez ◽  
L. Mourelle ◽  
...  

This paper deals with chemical analyses for hydrogen, sodium, potassium, calcium, chloride, sulphate and nitrate ions in daily precipitation samples collected in the English Lake District, and examines the correlations of these analyses with ( a ) one another, ( b ) the amount of precipitation, ( c ) wind direction, ( d ) wind velocity, and ( e ) temperature. Highly significant correlations are found between estimates for H, K, Ca, NO 3 and SO 4 ions, and atmospheric pollution appears to supply much of the sulphate in Lake District rain, since it comes largely as sulphuric acid from the south-east. The correlation between Na and Cl is also extremely close, with the proportion between the two ions very similar to that in sea water. Since these two ions are supplied mainly from the south-west, in amounts which are greatly increased by high winds, sea spray may be inferred as the principal source. Nevertheless, evidence is presented for some small supply from atmospheric pollution, and it is furthermore suggested that mixed droplets of sea salt and sulphuric acid may, upon abstraction of moisture by freezing or evaporation, release gaseous hydrogen chloride to the air and so alter the balance of Na and Cl in precipitation. The supply of Na and Cl is also considerably higher in cold than in warm weather, a phenomenon possibly connected with stormier conditions and greater evaporation over the Atlantic Ocean. The atmospheric contribution of ions to natural waters via precipitation is shown to be of great importance, in particular to bog pools, to upland tarns on hard rocks, and to the soil solution in highly organic mor humus layers overlying heavily leached hillside soils. Sodium and chloride in most surface waters appears to be almost wholly supplied by sea spray, while calcium and magnesium bicarbonates are the main products of soil weathering. A net loss of rain acids is evident in all soil waters, although some may be more acid than normal rain water owing to considerable concentration by evaporation. The soil waters are relatively rich in potassium, presumably supplied from decaying vegetation.


1963 ◽  
Vol 40 (1) ◽  
pp. 187-193
Author(s):  
M. J. WELLS

1. A method of teaching Octopus chemotactile discriminations is described. 2. The animals can be shown to be capable of distinguishing by touch between porous objects soaked in plain sea water and sea water with hydrochloric acid, sucrose or quinine sulphate added. 3. They can detect these substances in concentrations at least 100 times as dilute as the human tongue is capable of detecting them in distilled water. 4. They can be trained to distinguish between equimolar (0.2 mM) solutions of hydrochloric acid, sucrose and quinine. 5. They can also be trained to distinguish between sea water and fresh water or half-strength sea water or sea water with twice the usual quantity of salt. 6. The function of the ‘olfactory organ’ is discussed. 7. Chemotactile learning is discussed in relation to the means by which Octopus finds its way about the territory around its ‘home’


1964 ◽  
Vol 41 (3) ◽  
pp. 499-511
Author(s):  
P. S. MEADOWS

1. A simple method is described for determining the substrate preferences of Corophium volutator (Pallas) and Corophium arenarium Crawford. 2. If offered a choice of its own substrate with that of the other species each prefers its own. 3. Level of illumination and colour of substrate have little effect on choice. An animal's size and hence its age has little effect on its substrate preferences. 4. C. volutator prefers a substrate previously maintained under anaerobic conditions, C. arenarium vice versa. 5. Treatments which kill, inactivate, or remove micro-organisms render sands unattractive to Corophium. These include boiling, acid-cleaning, drying, and soaking in fixatives or distilled water. Attempts to make these sands attractive again failed. 6. Distilled water, and solutions of the non-electrolytes sucrose and glycerol at the same osmotic pressure as sea water, induce many bacteria to desorb from sand particles; smaller numbers are desorbed in the presence of solutions of electrolytes at the same ionic strength as sea water (NaCl, Na2SO4, KC1, MgSO4, MgCl2, CaCl2). Of all these, only distilled water and solutions of MgCl2 and CaCl2 reduce the attractive properties of sands. Hence the loss of bacteria from the surface of sand grains, though related to the ionic strength and composition of the medium, is not necessarily associated with a substrate becoming unattractive.


Paleobiology ◽  
1981 ◽  
Vol 7 (4) ◽  
pp. 469-480 ◽  
Author(s):  
J. Kirk Cochran ◽  
Danny M. Rye ◽  
Neil H. Landman

The growth rate of Nautilus pompilius in its natural environment has been determined from radioactive disequilibrium between 210Pb (half-life 22.3 yr) and its granddaughter 210Po (half-life 138 d) in septa of two juvenile specimens. 210Pb and 210Po data from the most recently formed shell material of both specimens indicate that 210Pb from sea water is incorporated into septa during septal formation and 210Po is excluded. Therefore the 210Po/210Pb activity ratio serves as a chronometer to estimate the age of each septum and the time between formation of septa. In the specimens studied the average time between sucessive points in septal deposition is 75 d for the nine most recent septa of one specimen and 23 d for the six most recent septa of the other specimen. These different growth rates, if representative of the ontogeny of each animal, suggest that the timing of septal deposition probably is dependent on the rate of shell and tissue growth coupled with buoyancy requirements and is not a unique period for all Nautilus. The habitat and ontogeny of Nautilus may be inferred from the pattern of stable isotopes of oxygen and carbon in the septa. Both specimens show a pronounced break in δ18O from nearly uniform light values in the first seven septa to heavier values (∼1%) after the seventh septum. We interpret this break to correspond to the hatching of Nautilus. A temperature (i.e. water depth) interpretation of the δ18O data for septa after the eighth is complicated by a positive correlation between δ18O and δ13C. This may reflect horizontal migration of the animal or a kinetically controlled fractionation of carbon and oxygen isotopes during septal formation.


Sign in / Sign up

Export Citation Format

Share Document