Stimulation of sodium transport and fluid secretion by ouabain in an insect malpighian tubule

1988 ◽  
Vol 137 (1) ◽  
pp. 265-276 ◽  
Author(s):  
S. H. Maddrell ◽  
J. A. Overton

Ouabain, at all concentrations higher than 2 × 10(−7) mol l-1, stimulates the rate at which the Malpighian tubules of the insect, Rhodnius, transport sodium ions and fluid into the lumen. An effect on paracellular movement of sodium ions is unlikely because ouabain makes the electrical potential of the lumen more positive, which would slow diffusion of sodium into the lumen. Radioactive ouabain binds to the haemolymph-facing sides of the tubule cells but not to the luminal face. This binding is reduced in the presence of elevated levels of potassium or of non-radioactive ouabain. Bound ouabain is only slowly released on washing in ouabain-free saline. The evidence suggests that there is a Na+/K+-ATPase on the outer (serosal) membranes of the tubules. Such a pump would transport sodium in a direction opposed to the flow of ions and water involved in fluid transport; poisoning it with ouabain would remove this brake, and fluid flow and sodium transport would increase, as observed.

1998 ◽  
Vol 201 (24) ◽  
pp. 3411-3418
Author(s):  
J. A. Riegel ◽  
S. H. P. Maddrell ◽  
R. W. Farndale ◽  
F. M. Caldwell

External application of the 3',5'-cyclic monophosphates of inosine,cytidine, uridine and thymidine stimulated the fluid secretion rate (FSR)of Malpighian tubules isolated from Drosophila melanogaster. The evidence suggested that the cyclic nucleotides acted intracellularly in some capacity. Receptors of the 'purinergic' type appeared not to be major contributors to fluid secretion; of three purinergic agonists tried,adenosine, adenosine 5'-monophosphate (AMP) and adenosine 5'-triphosphate(ATP), only adenosine had an effect, but this was not observed consistently. None of the purinergic agonists interfered with the stimulation of the FSR by adenosine 3',5'-cyclic monophosphate (cAMP). The maximum stimulation of the fluid-secretion rate by any cyclic nucleotide was approximately double the unstimulated (control) rate. Tubules stimulated to less than maximal FSR by one cyclic nucleotide could be stimulated maximally by an appropriate concentration of another cyclic nucleotide. Malpighian tubules bathed in solutions that contained either[3H]cAMP or [3H]cGMP accumulated radioactivity to a level many times that in the medium. Accumulation of radioactivity by tubules bathed in 430 nmol l-1 [3H]cAMP was suppressed by 1 mmol l-1 non-radioactive cyclic nucleotides in the order cAMP>>cGMP>cIMP>cCMP; neither cTMP nor cUMP suppressed the accumulation of [3H]cAMP. Approximately 35 % of the[3H]cAMP and 80 % of the [3H]cGMP that entered the Malpighian tubule cells was metabolised to compounds that were not identified. It was concluded that cyclic nucleotides enter the Malpighian tubule cells by at least one transport mechanism which is particularly sensitive to purine-based nucleotides.


2002 ◽  
Vol 205 (11) ◽  
pp. 1645-1655 ◽  
Author(s):  
Juan P. Ianowski ◽  
Robert J. Christensen ◽  
Michael J. O'Donnell

SUMMARYIntracellular ion activities (aion) and basolateral membrane potential (Vbl) were measured in Malpighian tubule cells of Rhodnius prolixus using double-barrelled ion-selective microelectrodes. In saline containing 103mmoll-1Na+, 6mmoll-1 K+ and 93mmoll-1Cl-, intracellular ion activities in unstimulated upper Malpighian tubules were 21, 86 and 32mmoll-1, respectively. In serotonin-stimulated tubules, aCl was unchanged, whereas aNa increased to 33mmoll-1 and aK declined to 71mmoll-1. Vbl was -59mV and -63mV for unstimulated and stimulated tubules, respectively. Calculated electrochemical potentials(Δμ/F) favour passive movement of Na+ into the cell and passive movement of Cl- out of the cell in both unstimulated and serotonin-stimulated tubules. Passive movement of K+ out of the cell is favoured in unstimulated tubules. In stimulated tubules, Δμ/F for K+ is close to 0 mV.The thermodynamic feasibilities of Na+-K+-2Cl-, Na+-Cl-and K+-Cl- cotransporters were evaluated by calculating the net electrochemical potential (Δμnet/F) for each transporter. Our results show that a Na+-K+-2Cl- or a Na+-Cl- cotransporter but not a K+-Cl- cotransporter would permit the movement of ions into the cell in stimulated tubules. The effects of Ba2+ and ouabain on Vbl and rates of fluid and ion secretion show that net entry of K+ through ion channels or the Na+/K+-ATPase can be ruled out in stimulated tubules. Maintenance of intracellular Cl- activity was dependent upon the presence of both Na+ and K+ in the bathing saline. Bumetanide reduced the fluxes of both Na+ and K+. Taken together, the results support the involvement of a basolateral Na+-K+-2Cl- cotransporter in serotonin-stimulated fluid secretion by Rhodnius prolixus Malpighian tubules.


1976 ◽  
Vol 65 (2) ◽  
pp. 323-332
Author(s):  
J. D. Gee

The effects of three inhibitors of sodium transport on the secretion of fluid by the Malpighian tubules of Glossina morsitans have been observed. The cardiac glycoside, ouabain, affects neither the rate of secretion nor the sodium concentration of the fluid secreted when isolated tubules are bathed by solutions containing a range of sodium and potassium concentrations. Secretion is inhibited, however, by ethacrynic acid and amiloride. The results confirm that fluid secretion by the Malpighian tubules of this insect is dependent on the active transport of sodium ions and show that Na+/k+ exchange pumps are not involved in this process.


1999 ◽  
Vol 202 (11) ◽  
pp. 1561-1570 ◽  
Author(s):  
S.M. Linton ◽  
M.J. O'Donnell

Mechanisms of Na+ and K+ transport across the basolateral membrane of isolated Malpighian tubules of Drosophila melanogaster were studied by examining the effects of ion substitution and putative inhibitors of specific ion transporters on fluid secretion rates, basolateral membrane potential and secreted fluid cation composition. Inhibition of fluid secretion by [(dihydroindenyl)oxy]alkanoic acid (DIOA) and bumetanide (10(−)4 mol l-1) suggested that a K+:Cl- cotransporter is the main route for K+ entry into the principal cells of the tubules. Differences in the effects of bumetanide on fluxes of K+ and Na+ are inconsistent with effects upon a basolateral Na+:K+:2Cl- cotransporter. Large differences in electrical potential across apical (>100 mV, lumen positive) and basolateral (<60 mV, cell negative) cell membranes suggest that a favourable electrochemical gradient for Cl- entry into the cell may be used to drive K+ into the cell against its electrochemical gradient, via a DIOA-sensitive K+:Cl- cotransporter. A Na+/K+-ATPase was also present in the basolateral membrane of the Malpighian tubules. Addition of 10(−)5 to 10(−)3 mol l-1 ouabain to unstimulated tubules depolarized the basolateral potential, increased the Na+ concentration of the secreted fluid by 50–73 % and increased the fluid secretion rate by 10–19 %, consistent with an increased availability of intracellular Na+. We suggest that an apical vacuolar-type H+-ATPase and a basolateral Na+/K+-ATPase are both stimulated by cyclic AMP. In cyclic-AMP-stimulated tubules, K+ entry is stimulated by the increase in the apical membrane potential, which drives K+:Cl- cotransport at a faster rate, and by the stimulation of the Na+/K+-ATPase. Fluid secretion by cyclic-AMP-stimulated tubules was reduced by 26 % in the presence of ouabain, suggesting that the Na+/K+-ATPase plays a minor role in K+ entry into the tubule cells. Malpighian tubules secreted a Na+-rich (150 mmol l-1) fluid at high rates when bathed in K+-free amino-acid-replete saline (AARS). Secretion in K+-free AARS was inhibited by amiloride and bafilomycin A1, but not by bumetanide or hydrochlorothiazide, which inhibit Na+:Cl- cotransport. There was no evidence for a Na+ conductance in the basolateral membrane of unstimulated or cyclic-AMP-stimulated tubules. Possible mechanisms of Na+ entry into the tubule cells include cotransport with organic solutes such as amino acids and glucose.


2017 ◽  
Author(s):  
Gil Y. Yerushalmi ◽  
Lidiya Misyura ◽  
Heath A. MacMillan ◽  
Andrew Donini

AbstractAt low temperatures, Drosophila, like most insects, lose the ability to regulate ion and water balance across the gut epithelia, which can lead to a lethal increase of [K+] in the hemolymph (hyperkalemia). Cold-acclimation, the physiological response to low temperature exposure, can mitigate or entirely prevent these ion imbalances, but the physiological mechanisms that facilitate this process are not well understood. Here, we test whether plasticity in the ionoregulatory physiology of the gut and Malpighian tubules of Drosophila may aid in preserving ion homeostasis in the cold. Upon adult emergence, D. melanogaster females were subjected to seven days at warm (25°C) or cold (10°C) acclimation conditions. The cold acclimated flies had a lower critical thermal minimum (CTmin), recovered from chill coma more quickly, and better maintained hemolymph K+ balance in the cold. The improvements in chill tolerance coincided with increased Malpighian tubule fluid secretion and better maintenance of K+ secretion rates in the cold, as well as reduced rectal K+ reabsorption in cold-acclimated flies. To test whether modulation of ion-motive ATPases, the main drivers of epithelial transport in the alimentary canal, mediate these changes, we measured the activities of Na+-K+-ATPase and V-type H+-ATPase at the Malpighian tubules, midgut, and hindgut. Na+/K+-ATPase and V-type H+-ATPase activities were lower in the midgut and the Malpighian tubules of cold-acclimated flies, but unchanged in the hindgut of cold acclimated flies, and were not predictive of the observed alterations in K+ transport. Our results suggest that modification of Malpighian tubule and gut ion and water transport likely prevents cold-induced hyperkalemia in cold-acclimated flies and that this process is not directly related to the activities of the main drivers of ion transport in these organs, Na+/K+- and V-type H+-ATPases.Summary StatementAt low temperatures, insects lose the ability to regulate ion and water balance and can experience a lethal increase in hemolymph [K+]. Previous exposure to low temperatures can mitigate this effect and improve chill tolerance. Here, we show that plasticity of ion and fluid transport across the Malpighian tubule and rectal epithelia likely drive this response.


1993 ◽  
Vol 178 (1) ◽  
pp. 231-243 ◽  
Author(s):  
N. Audsley ◽  
G. M. Coast ◽  
D. A. Schooley

1. Manduca sexta diuretic hormone (Mas-DH) stimulates fluid secretion by adult Malpighian tubules of M. sexta, demonstrating its site of diuretic action in M. sexta for the first time. It was not possible to develop a suitable bioassay to measure fluid secretion in larval proximal tubules. 2. Mas-DH has an antidiuretic action on the cryptonephric complex of larval M. sexta because it increases fluid absorption from the rectum. It appears that in this complex Mas-DH is acting on a Na+/K+/2Cl- co-transporter, presumably on the basal membrane of the cryptonephric Malpighian tubules, because Mas-DH-stimulated fluid absorption by the cryptonephric complex is inhibited by bumetanide or the removal of Cl-, Na+ or K+ from the haemolymph side of the tissue. This is the first demonstration of hormonal control of fluid absorption by the cryptonephric complex. 3. Concomitant with the stimulation of fluid transport, Mas-DH increases the amount of cyclic AMP secreted by adult Malpighian tubules and the cryptonephric complex. In addition, Mas-DH promotes cyclic AMP production by the larval proximal tubules.


1997 ◽  
Vol 200 (17) ◽  
pp. 2363-2367 ◽  
Author(s):  
M C Quinlan ◽  
N J Tublitz ◽  
M J O'Donnell

Rhodnius prolixus eliminates NaCl-rich urine at high rates following its infrequent but massive blood meals. This diuresis involves stimulation of Malpighian tubule fluid secretion by diuretic hormones released in response to distention of the abdomen during feeding. The precipitous decline in urine flow that occurs several hours after feeding has been thought until now to result from a decline in diuretic hormone release. We suggest here that insect cardioacceleratory peptide 2b (CAP2b) and cyclic GMP are part of a novel mechanism of anti-diuresis. Secretion rates of 5-hydroxytryptamine-stimulated Malpighian tubules are reduced by low doses of CAP2b or cyclic GMP. Maximal secretion rates are restored by exposing tubules to 1 mmol l-1 cyclic AMP. Levels of cyclic GMP in isolated tubules increase in response to CAP2b, consistent with a role for cyclic GMP as an intracellular second messenger. Levels of cyclic GMP in tubules also increase as urine output rates decline in vivo, suggesting a physiological role for this nucleotide in the termination of diuresis.


1987 ◽  
Vol 88 (2) ◽  
pp. 251-265 ◽  
Author(s):  
H.B. Skaer ◽  
S.H. Maddrell ◽  
J.B. Harrison

This paper describes the structural characteristics and permeability properties of the smooth septate junctions between the upper Malpighian tubule cells of a blood-sucking bug, Rhodnius prolixus. The permeability of the paracellular route was tested only for solutes that could be demonstrated not to cross the epithelium via the cellular route. The intercellular clefts were readily permeated by sucrose, inulin and polyethylene glycol (PEG), showing a higher permeability to molecules of smaller radius (PEG versus sucrose). Negatively charged molecules permeated the clefts more readily than positively charged ones. The effects of pH, urea and luminal flow rate on permeability were studied. The results are discussed in relation to the physiological tightness of the Malpighian tubules to certain solutes and to its function as an excretory epithelium.


1995 ◽  
Vol 269 (6) ◽  
pp. R1321-R1326 ◽  
Author(s):  
S. A. Davies ◽  
G. R. Huesmann ◽  
S. H. Maddrell ◽  
M. J. O'Donnell ◽  
N. J. Skaer ◽  
...  

A cardioacceleratory peptide, CAP2b, identified originally in the lepidopteran Manduca sexta, stimulates fluid secretion by Malpighian tubules of the dipteran Drosophila melanogaster. High-performance liquid chromatography analyses of adult D. melanogaster reveal the presence of a CAP2b-like peptide, that coelutes with M. sexta CAP2b and synthetic CAP2b and that has CAP2b-like effects on the M. sexta heart. CAP2b accelerates fluid secretion in tubules stimulated by adenosine 3',5'-cyclic monophosphate (cAMP) but has no effect on tubules stimulated by guanosine 3',5'-cyclic monophosphate (cGMP), implying that it acts through the latter pathway. By contrast, the action of leucokinin is additive to both cAMP and cGMP but not to thapsigargin, suggesting that leucokinin acts by the elevation of intracellular calcium. CAP2b stimulation elevates tubule cGMP levels but not those of cAMP. By contrast, leucokinin has no effect on levels of either cyclic nucleotide. Both CAP2b and cGMP increase transepithelial potential difference, suggesting that stimulation of vacuolar-adenosinetriphosphatase action underlies the corresponding increases in fluid secretion. Overall, the results show that a Drosophila CAP2b-related peptide acts to stimulate fluid secretion by Malpighian tubules through the cGMP-signaling pathway.


1973 ◽  
Vol 51 (6) ◽  
pp. 405-409 ◽  
Author(s):  
Ivan T. Beck ◽  
P. K. Dinda

The effect of 72 h fasting on the transmural electrical potential difference (P.D.), the unidirectional fluxes, and the net flux of sodium and the net transport of fluid across the jejunum of rats was investigated. Everted jejunal segments were incubated in 12 ml of Krebs–Ringer bicarbonate solution containing 5.55 mM glucose on either side for 1 h at 37 °C. Seventy-two hours fasting caused a 63% increase in the transmural P.D., a 60% increase in the flux of Na from the mucosal to the serosal side, and a 48% increase in the flux of Na from the serosal to the mucosal side. The net mucosal to serosal Na flux increased by 97%. There was also a 41% increase in fluid transport across the intestine of fasted rats. The concomitant increase in sodium and fluid transport and in transmural P.D. is consistent with the current hypotheses of fluid and sodium transport.


Sign in / Sign up

Export Citation Format

Share Document