intercellular clefts
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

1987 ◽  
Vol 88 (2) ◽  
pp. 251-265 ◽  
Author(s):  
H.B. Skaer ◽  
S.H. Maddrell ◽  
J.B. Harrison

This paper describes the structural characteristics and permeability properties of the smooth septate junctions between the upper Malpighian tubule cells of a blood-sucking bug, Rhodnius prolixus. The permeability of the paracellular route was tested only for solutes that could be demonstrated not to cross the epithelium via the cellular route. The intercellular clefts were readily permeated by sucrose, inulin and polyethylene glycol (PEG), showing a higher permeability to molecules of smaller radius (PEG versus sucrose). Negatively charged molecules permeated the clefts more readily than positively charged ones. The effects of pH, urea and luminal flow rate on permeability were studied. The results are discussed in relation to the physiological tightness of the Malpighian tubules to certain solutes and to its function as an excretory epithelium.


Development ◽  
1986 ◽  
Vol 91 (1) ◽  
pp. 181-195
Author(s):  
T. M. Scott ◽  
S. M. Bunt

We have examined the neural tube in Xenopus laevis tadpoles to investigate the anatomical guidance elements which may be present in the presumptive marginal zone. With appropriate fixation protocols the neuroepithelial cells appeared in contact; electron microscopic observations failed to show any specialized intercellular spaces preceding the growing axons. The first fibres were found in the intercellular clefts between the neuroepithelial cells near the surface of the neural tube. Reconstructions of the neural tube from examination of serial 1 µm sections showed that the intercellular clefts are non-aligned at this stage and branching. Scanning electron microscopy of the surface of the neural tube confirmed that the intercellular spaces are non-aligned and often branch caudal to the growing front of descending axons. Thus to grow in a consistent direction the developing axons may have to make consistent and selective (specific) selections of pathway at numerous branch points if their growth is restricted to these intercellular clefts. As more axons grow along the neural tube, the intercellular clefts become wider, and the neuroepithelial cells bounding the clefts become indented. At later stages many fibres were observed with both scanning and transmission electron microscopy to grow along the surface of the neural tube. These changes in neuroepithelial cell morphology and fibre pathway allow axons to form bundles which take a fairly straight course in contrast to the winding path which must be taken by the first axons to grow through the intercellular clefts.


1985 ◽  
Vol 248 (6) ◽  
pp. H945-H960 ◽  
Author(s):  
S. Weinbaum ◽  
G. Tzeghai ◽  
P. Ganatos ◽  
R. Pfeffer ◽  
S. Chien

A new quantitative model is presented to explore the changes in vascular permeability that would result if the intercellular clefts around widely scattered endothelial cells were to become leaky to macromolecules in the range of roughly 4–10 nm during normal cell turnover. Although these open junctions occupy less than 10(-5) of the en face area of the endothelial surface, it is shown that the endothelial permeability can increase by 50–100% due to the experimentally observed regional variations in turnover in the larger arteries, whereas in the thinner walled veins and smaller arteries the subendothelial concentration is not significantly elevated. These results provide a very plausible explanation for the observed focal differences in the uptake of 125I-albumin and 131I-fibrinogen in blue and white areas and the nonselectivity of the local enhancement in uptake for these two molecules as a function of molecular size. The model has important implications for the localization of atherogenesis and the importance of endothelial cell turnover on the transport of proteins in vessels of all sizes.


1984 ◽  
Vol 60 (4) ◽  
pp. 803-813 ◽  
Author(s):  
K. Gwan Go ◽  
Hendrik-Jan Houthoff ◽  
Engbert H. Blaauw ◽  
Piet Havinga ◽  
Johannes Hartsuiker

✓ Morphological and enzyme ultracytochemical evidence is presented to support the contention that the walls of arachnoid cysts secrete fluid. Clinical evidence has already suggested this phenomenon, including intracranial pressure elevation and expansion in some cases, and the observation that arachnoid cysts constitute closed compartments with a fluid content that cannot be derived from other cerebrospinal fluid-containing spaces. Ultrastructurally, the cyst lining showed a similarity to subdural neurothelium and the neurothelial lining of arachnoid granulations in such morphological features as intercellular clefts with sinusoid dilatations, desmosomal intercellular junctions (upon which tonofilaments may be abutting), pinocytotic vesicles, multi-vesicular bodies, lysosomal structures, and the presence of a basal lamina. Some of these features, together with the presence of microvilli on the luminal surface, are consistent with fluid secretion. Moreover, enzyme cytochemistry demonstrated (Na+ + K+)-ATPase in the plasma membranes lining the cavity, either directly (the apical membranes), or via the intercellular clefts (the basolateral membranes), and, with alkaline phosphatase occupying the opposite plasma membranes, this structural organization indicates fluid transport toward the lumen. It may be surmised that arachnoid cysts derive from subdural neurothelium differentiating towards arachnoid villus mesothelium.


1983 ◽  
Vol 106 (1) ◽  
pp. 231-253 ◽  
Author(s):  
M. J. O'Donnell ◽  
S. H. Maddrell

Because the frontal area of the intercellular clefts in Malpighian tubules is small, and the osmotic permeability of the cell membranes is large, the route for transepithelial water movement during fluid secretion is transcellular. Water movements appear to be a passive response to osmotic gradients of a few mosmol 1(−1) produced in the cells and in he lumen by active ion transport. The excretory functions of Malpighian tubules are discussed in relation to recent analyses of the routes of passive permeation for non-electrolytes. Uncharged molecules smaller than a disaccharide appear to move at significant rates through the cells whereas molecules as large as inulin traverse the epithelium by a paracellular path. In addition there are specific active transport mechanisms for a variety of organic molecules. The routes and mechanisms proposed for water and solute movements are discussed in relation to comparable studies in other epithelia.


1980 ◽  
Vol 28 (5) ◽  
pp. 472-474 ◽  
Author(s):  
B Krisch

Following a short immobilization the supraoptic perikarya exhibit peroxidase-antiperoxidase (PAP)-labeled rough endoplasmic reticulum and the intercellular clefts in the basal nuclear area are distinctly labeled by PAP molecules. The fibers in this basal part of the supraoptic nucleus as well as those of the internal zone of the median eminence, beside few polymorphic, positively strained granules, contain a labeled tubular network or free PAP on fuzzy material.


Sign in / Sign up

Export Citation Format

Share Document