Protein synthesis in a fish heart: responses to increased power output

1988 ◽  
Vol 137 (1) ◽  
pp. 565-587 ◽  
Author(s):  
D. F. Houlihan ◽  
C. Agnisola ◽  
A. R. Lyndon ◽  
C. Gray ◽  
N. M. Hamilton

The effects of exercise on the rates of protein synthesis in the chambers of the trout heart were investigated in vitro and in vivo. An in vitro rainbow trout heart preparation was developed which permitted perfusion of the coronary supply to the compact region of the ventricular muscle. This preparation was used to examine the mechanical responses to preload pressures, the oxygen consumption at different power outputs and the rates of protein synthesis in the various heart components. By increasing preload pressure it was possible to double cardiac output, oxygen consumption and power output without changing heart rate. Mechanical efficiency of the hearts was approximately 20%. Perfusion of the coronary vessels improved cardiac output. Protein synthesis was measured in isolated hearts by the incorporation of [3H]phenylalanine added at high concentration (1.35 mmol l-1) to the perfusion medium. The various chambers of the heart showed marked differences in their rates of protein synthesis. Increasing cardiac output and power output in vitro by twofold over 20 min increased the fractional rate of protein synthesis by approximately 2.5-fold in the atrium and ventricle but did not affect the rates in the bulbus arteriosus. Perfusion of the coronary vessels significantly increased the rates of protein synthesis of the compact layer of the ventricle. In vivo there were no significant differences in the fractional protein synthesis rates between the atrium and ventricle; slow-speed continuous swimming over 40 min (1.5 body lengths s-1) caused an increase in the rates of protein synthesis in all the chambers except the bulbus arteriosus. The stimulation in the fractional rates of protein synthesis by approximately 32% was not as great as in vitro. Both in vivo and in vitro the increased rates of protein synthesis occurred without any change in RNA to protein ratios, indicating an improved activity of protein synthesis per unit of RNA. It is concluded that short-term increases in cardiac contractility, possibly acting through the mechanical stretch on the cardiac muscle, stimulated protein synthesis, particularly in the ventricle, through increased ribosomal activity.

2011 ◽  
Vol 286 (22) ◽  
pp. 19917-19931 ◽  
Author(s):  
Haruki Hasegawa ◽  
John Wendling ◽  
Feng He ◽  
Egor Trilisky ◽  
Riki Stevenson ◽  
...  

Protein synthesis and secretion are essential to cellular life. Although secretory activities may vary in different cell types, what determines the maximum secretory capacity is inherently difficult to study. Increasing protein synthesis until reaching the limit of secretory capacity is one strategy to address this key issue. Under highly optimized growth conditions, recombinant CHO cells engineered to produce a model human IgG clone started housing rod-shaped crystals in the endoplasmic reticulum (ER) lumen. The intra-ER crystal growth was accompanied by cell enlargement and multinucleation and continued until crystals outgrew cell size to breach membrane integrity. The intra-ER crystals were composed of correctly folded, endoglycosidase H-sensitive IgG. Crystallizing propensity was due to the intrinsic physicochemical properties of the model IgG, and the crystallization was reproduced in vitro by exposing a high concentration of IgG to a near neutral pH. The striking cellular phenotype implicated the efficiency of IgG protein synthesis and oxidative folding exceeded the capacity of ER export machinery. As a result, export-ready IgG accumulated progressively in the ER lumen until a threshold concentration was reached to nucleate crystals. Using an in vivo system that reports accumulation of correctly folded IgG, we showed that the ER-to-Golgi transport steps became rate-limiting in cells with high secretory activity.


1974 ◽  
Vol 52 (3) ◽  
pp. 496-499 ◽  
Author(s):  
Glenn B. Axelrod ◽  
April A. Whitbeck ◽  
Jules Cohen

The capacities of D- and L-thyroxine to induce cardiac hypertrophy have been studied in rats as a function of the extent of the circulatory changes produced by the two isomers. D-Thyroxine had no effect on blood pressure, heart rate, or cardiac output, but significantly increased heart mass. L-Thyroxine had a small effect on mean blood pressure, a larger effect on heart rate, and caused a large increase in cardiac output. The closest parallels were between effects on heart rate and on heart growth. In companion experiments, D- and L-thyroxine were shown to be equipotent in stimulating atrial protein synthesis in vitro. The growth-promoting effects of both D- and L-thyroxine, therefore, seem largely direct and independent of the large increase in flow work produced by administration of the L-isomer in vivo.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1382
Author(s):  
Mina Martini ◽  
Iolanda Altomonte ◽  
Domenico Tricò ◽  
Riccardo Lapenta ◽  
Federica Salari

The increase of knowledge on the composition of donkey milk has revealed marked similarities to human milk, which led to a growing number of investigations focused on testing the potential effects of donkey milk in vitro and in vivo. This paper examines the scientific evidence regarding the beneficial effects of donkey milk on human health. Most clinical studies report a tolerability of donkey milk in 82.6–98.5% of infants with cow milk protein allergies. The average protein content of donkey milk is about 18 g/L. Caseins, which are main allergenic components of milk, are less represented compared to cow milk (56% of the total protein in donkey vs. 80% in cow milk). Donkey milk is well accepted by children due to its high concentration of lactose (about 60 g/L). Immunomodulatory properties have been reported in one study in humans and in several animal models. Donkey milk also seems to modulate the intestinal microbiota, enhance antioxidant defense mechanisms and detoxifying enzymes activities, reduce hyperglycemia and normalize dyslipidemia. Donkey milk has lower calorie and fat content compared with other milks used in human nutrition (fat ranges from 0.20% to 1.7%) and a more favourable fatty acid profile, being low in saturated fatty acids (3.02 g/L) and high in alpha-linolenic acid (about 7.25 g/100 g of fat). Until now, the beneficial properties of donkey milk have been mostly related to whey proteins, among which β-lactoglobulin is the most represented (6.06 g/L), followed by α-lactalbumin (about 2 g/L) and lysozyme (1.07 g/L). So far, the health functionality of donkey milk has been tested almost exclusively on animal models. Furthermore, in vitro studies have described inhibitory action against bacteria, viruses, and fungi. From the literature review emerges the need for new randomized clinical trials on humans to provide stronger evidence of the potential beneficial health effects of donkey milk, which could lead to new applications as an adjuvant in the treatment of cardiometabolic diseases, malnutrition, and aging.


2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


2001 ◽  
Vol 268 (20) ◽  
pp. 5375-5385 ◽  
Author(s):  
Linda McKendrick ◽  
Simon J. Morley ◽  
Virginia M. Pain ◽  
Rosemary Jagus ◽  
Bhavesh Joshi

1970 ◽  
Vol 16 (10) ◽  
pp. 959-963 ◽  
Author(s):  
R. W. Detroy ◽  
C. W. Hesseltine

The effect of two inhibitors on the formation of aflatoxin B1 synthetase activity in strain NRRL 2999 Aspergillus parasiticus has been studied. Aflatoxin B1 synthesizing activity was measured in vivo by incorporation of the 14C-methionine methyl group into aflatoxin B1. Cycloheximide at a concentration of 150 μg/ml blocks protein synthesis completely. If addition of cycloheximide is made before B1 synthetase appears, no activity accumulates; if added during accumulation, activity is frozen at the level reached at the time of addition. The cycloheximide effect is reversible since morphogenesis, total protein synthesis, and aflatoxin B1 synthetase activity all resume after removal of the inhibitor.DL-p-Fluorophenylalanine partially inhibits aflatoxin B1 synthesis in vivo; however, its effect upon macromolecular synthesis is incomplete even at high concentration levels. Once formed, the aflatoxin synthetase appears to maintain B1 synthesis when further protein synthesis is blocked; i.e., it is not rapidly degraded.


1975 ◽  
Vol 146 (3) ◽  
pp. 675-685 ◽  
Author(s):  
S G Siddell ◽  
R J Ellis

The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic ‘map’ of its L-(35S)methionine-labelled peptides with the tryptic ‘map’ of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.


Sign in / Sign up

Export Citation Format

Share Document