Control of Locomotion in the Freshwater Snail Planorbis Corneus: I. Locomotory Repertoire of the Snail

1990 ◽  
Vol 152 (1) ◽  
pp. 389-404
Author(s):  
T. G. DELIAGINA ◽  
G. N. ORLOVSKY

The freshwater snail Planorbis corneas moves as a result of the beating of cilia covering the sole of the foot. The tracks of snails crawling on the walls and on the bottom of an aquarium were recorded visually under various conditions of snail feeding. The following results were obtained. 1. In the absence of food, the snails exhibited diurnal changes in locomotor activity, with a maximum during the day. Horizontal tracks on the aquarium walls were commonest during the day and vertical ones at night. When crawling on the aquarium wall, the snail actively stabilized its horizontal or vertical orientation: when encountering an obstacle or after a forced turn, the snail re-established the initial direction of locomotion. 2. When fed on the water surface, the snail decreased its locomotor speed if food particles entered its mouth. The decrease in speed resulted from the slowing down of ciliary beating in the anterior part of the sole of the foot. This finding demonstrates that motor activity in different parts of the ciliated epithelium can be controlled independently by the nervous system. 3. When searching for food particles, the snail exhibited very sinuous tracks, the turns occurring spontaneously at irregular intervals. This finding shows that there is a programme of ‘looping’ in the nervous system. 4. When the snail was fed on the bottom near a vertical wall, it used the wall to climb to the water surface for lung ventilation. After ventilation, the snail performed a standard 180° turn and then returned to the food along the original outward track. Motion along a track was performed with high accuracy. 5. The locomotor apparatus of a snail allowed it to crawl not only on a flat surface but also along the very thin mucus thread that it makes.

2020 ◽  
Vol 17 (165) ◽  
pp. 20200139
Author(s):  
Soyoun Joo ◽  
Sunghwan Jung ◽  
Sungyon Lee ◽  
Robert H. Cowie ◽  
Daisuke Takagi

The means by which aquatic animals such as freshwater snails collect food particles distributed on the water surface are of great interest for understanding life at the air–water interface. The apple snail Pomacea canaliculata stabilizes itself just below the air–water interface and manipulates its foot such that it forms a cone-shaped funnel into which an inhalant current is generated, thereby drawing food particles into the funnel to be ingested. We measured the velocity of this feeding current and tracked the trajectories of food particles around and on the snail. Our experiments indicated that the particles were collected via the free surface flow generated by the snail’s undulating foot. The findings were interpreted using a simple model based on lubrication theory, which considered several plausible mechanisms depending on the relative importance of hydrostatic pressure, capillary action and rhythmic surface undulation.


1988 ◽  
Vol 70 (2) ◽  
pp. 332-341 ◽  
Author(s):  
Yu. I. Arshavsky ◽  
T. G. Deliagina ◽  
G. N. Orlovsky ◽  
Yu. V. Panchin

1975 ◽  
Vol 62 (3) ◽  
pp. 797-803
Author(s):  
M. S. Berry ◽  
V. W. Pentreath

Several investigators of the molluscan nervous system have used TEA, injected into presynptic neurones, to determine whether the connexions made by these neurones are monosynaptic. The increase in spike duration produced by the TEA causes an increase in transmitter release, and hence an increase in the amplitude of the postsynaptic potential if the connexion is direct. If the connexion is indirect, the spike in an intercalated neurone will not be affected by the TEA, and the postsynaptic response will remain constant. Experiments described here show that TEA can cross electrotonic junctions in the gastropod mollusc Planorbis corneus. They also show that each TEA-prolonged presynaptic impulse may produce more than one postsynaptic impulse. A larger postsynaptic potential could therefore be produced by presynaptic injection of TEA in the case of an indirect connexion. This indicates that care must be taken when interpreting the results of experiments using TEA to test for monosynaptic connexions.


1984 ◽  
Vol 35 (3) ◽  
pp. 377-422 ◽  
Author(s):  
R. Uribe ◽  
F.A. Sibbing

The structure of the oro-pharyngeal wall of the bottomfeeding common carp is investigated using light-and scanning electron microscopy. Densities of taste buds, mucus, club cells and the thickness of muscular layers are measured. Distribution patterns of these elements over the oro-pharyngeal surface are reconstructed from local counts. Six areas characterized by a specific combination of morphological features are distinguished and related to twelve feeding actions composing the process of food intake and handling in the carp. These areas are the lips (detection and oral manipulation of food), the orobuccal cavity (suction and resuspension chamber of ingested food and non-food particles), the most anterior pharynx (coarse selection of large food particles), the lateral pharynx (selection of small food particles), the posterior part of the anterior pharynx (formation of boluses, transport and loading of food into the chewing cavity) and the posterior pharynx (mastication and deglutition). The conical shape of the orobuccal cavity and the slit-shaped anterior pharynx reflect two different mechanisms for particle handling viz. by suction and by muscular bulging respectively. The opercular cavities serve large volume changes for suction feeding. Protruding types of taste buds and oligovillous epithelial cells may well serve mechanoreceptive functions required for steering the process. Otherwise, specialized mechanoreceptors have not been recognized. Mucous cells producing low-viscosity sialomucines occur in the anterior part of the oro-pharynx. They will serve maintaining a laminar flow during suction and lubrication of particle handling in the pharynx. Epithelial microridges may aid in holding the mucus. High-viscosity sulfomucines only appear in the posterior part of the pharynx and will aid in trapping small particles and aggregating them into boluses. The commonly accepted alarming function of club cells and their mechanism for release is questioned in view of their abundancy in the orobuccal cavity. The structure of the muscular palatal organ is discussed with respect to its role in selection between food and non-food particles. The available information on the afferent, efferent and central neural pathways of this system is briefly reviewed. Three levels of movement, related to the particle size to be handled, are proposed. Movement of the palatal organ as a whole, local outbulging of its surface into the pharyngeal slit and a possible very local movement of the muscular papillae in its anterior part. These hypotheses are based on the almost maximal taste bud densities (820/mm 2 ) in the palatal organ, the known complex laminated cyto-architecture of the enormous vagal lobes processing its input and suggestive of a palatotopic mapping, and on the complex muscle fiber systems in this organ. The movable gill rakers of the branchial sieve, each supplied with a muscular pad and numerous taste buds (325-625/mm 2 ), suggest their additional active role in selection. Muscle fiber systems in the posterior part of the palatal as well as in the closely appressed postlingual organ serve a peristalsis-like transport to the chewing cavity. Both are copiously supplied with sulfomucines from their deep crypts. Together these morphological and physiological features allow the carp a bottom feeding behaviour requiring the effective separation of food from soiled mixtures.


1996 ◽  
Vol 28 (4) ◽  
pp. 417-424 ◽  
Author(s):  
MARIA ENRICA FERRETTI ◽  
DARIO SONETTI ◽  
MARIA CRISTINA PARESCHI ◽  
MARCO BUZZI ◽  
MARIA LUISA COLAMUSSI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document