The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss)

1997 ◽  
Vol 200 (17) ◽  
pp. 2337-2346 ◽  
Author(s):  
D Alsop ◽  
C Wood

The impacts of feeding on the rate of O2 consumption (O2), aerobic swimming performance, nitrogenous waste excretion (ammonia-N and urea-N) and protein utilization as an aerobic fuel were investigated in juvenile rainbow trout. Feeding trout to satiation (in groups of 120) resulted in rapid growth and elevated routine O2 by 68% relative to fasted fish and by 30% relative to trout fed a maintenance ration of 1% of body mass daily. This in-tank O2 of satiation-fed trout was approximately 70% of the O2max observed at the critical swimming speed (UCrit) when trials were performed on individual trout in swimming respirometers. Feeding increased O2 at all swimming speeds; the absolute elevation (specific dynamic action or SDA effect) was dependent on ration but independent of swimming velocity. There was no difference in O2max at UCrit amongst different ration treatments, but UCrit was significantly reduced by 15% in satiation-fed fish relative to fasted fish. These results suggest that the irreducible SDA load reduces swimming performance and that O2max is limited by the capacity to take up O2 at the gills and/or to deliver O2 through the circulatory system rather than by the capacity to consume O2 at the tissues. Ammonia-N and urea-N excretion increased with protein intake, resulting in a 6.5-fold elevation in absolute protein use and a fourfold elevation in percentage use of protein as an aerobic fuel for routine metabolism in satiation-fed trout (50-70%) relative to fasted fish (15%). Urea-N excretion increased greatly with swimming speed in all treatments, but remained a minor component of overall nitrogen excretion. However, even in satiation-fed fish, ammonia-N excretion remained constant as swimming speed increased, and protein did not become more important as a fuel source during exercise. These results suggest that the reliance on protein as a fuel is greatly dependent on feeding quantity (protein intake) and that protein is not a primary fuel for exercise as suggested by some previous studies.

1998 ◽  
Vol 201 (24) ◽  
pp. 3355-3366
Author(s):  
C Swanson

The euryhaline milkfish (Chanos chanos) is an excellent subject for studies of the physiological and behavioral processes involved in salinity adaptation. In this study, energy partitioning for metabolism, activity and growth, maximal activity performance and blood osmotic concentrations were assessed at two activity levels in juvenile milkfish fed equal rations and maintained at a relatively constant temperature (262 C) and at salinities(15, 35 and 55 ?) that represented a wide range of osmoregulatory challenges. Changes in the measured parameters were not consistently related to the magnitude of the trans-integumentary osmotic gradients. Routine oxygen consumption rates were high in 35 ? salinity (mean 1 s.e.m. 1678 mg O2 kg-1 h-1) and comparably low in 15 and 55 ? salinity (1336 and 1273 mg O2 kg-1 h-1, respectively). Routine activity levels (relative swimming velocity) were highest in 35 ? salinity (0. 960.04 L s-1), where L is standard length, intermediate in 15 ? salinity (0.770.03 L s-1) and lowest in 55 ? salinity (0.670.03 L s-1). Growth was significantly higher in 55 ? salinity (3.40.2 % increase in wet body mass per day) than in 35 ?salinity (2.40.2 % increase per day) and intermediate in 15 ? salinity(2.90.5 % increase per day). Maximum swimming velocities decreased with increases in salinity, from 9.90.7 L s-1 in 15 ? salinity to 6.60. 5 L s-1 in 55 ? salinity. Sustained swimming activity above routine levels for 2 h resulted in an increase in blood osmotic concentrations in milkfish in 55 ?salinity, but osmoregulation was re-established during the second 2 h of activity. Thus, patterns of variation in metabolic rate and growth were largely parallel to variations in routine activity although, comparing 15 and 55 ? salinity, elevated maintenance costs for osmoregulation at the high salinity were detectable. Reduced osmoregulatory abilities and reductions in maximal swimming performance suggest that high salinity may constrain activity. The results demonstrate that investigations of salinity adaptation in euryhaline fishes should take into account the interactive effects of salinity on physiology and behavior.


1998 ◽  
Vol 55 (7) ◽  
pp. 1583-1590 ◽  
Author(s):  
T Ryan Gregory ◽  
Chris M Wood

Variation among individuals in specific growth rate (SGR), feeding, and two measures of swimming performance and their possible interrelationships were investigated in juvenile rainbow trout (Oncorhynchus mykiss) kept in groups on either satiation or half-satiation rations. Maximum sustainable velocity (Ucrit) was measured as an index of aerobic swimming performance and stamina (fatigue time in a fixed-velocity test at 6 body lengths ·s-1) as an index of anaerobic performance. Individual performance in both of these tests was found to be significantly repeatable. Trout fed on half-satiation ration exhibited significantly lower mean values of SGR and body size and higher levels of aggression-related fin damage, but no significant differences in stamina, relative or absolute Ucrit, glycogen content, or plasma cortisol. However, in these fish, there was a significant negative relationship between SGR and relative Ucrit, a significant positive relationship between SGR and stamina, and a significant positive relationship between SGR and total daily meal. None of these relationships were seen in fish fed to satiation. Plasma cortisol and tissue glycogen stores were not related to SGR. These results indicate that under the intensified competition of restricted ration, there are trade-offs between growth, feeding, and different types of swimming performance.


1994 ◽  
Vol 51 (3) ◽  
pp. 536-544 ◽  
Author(s):  
Rod W. Wilson ◽  
Harold L. Bergman ◽  
Chris M. Wood

Juvenile rainbow trout (Oncorhynchus mykiss, 5–13 g) were chronically exposed to sublethal Al (38 μg∙L−1) in acidified soft water (Na+ = 85, Ca2+ = 28 μEq∙L−1, pH 5.2–5.4) for 36 d. Acclimation (increased resistance to challenge with 162 μg Al∙L−1 Al at pH 5.2) occurred after 5 d and was associated with a fourfold increase in gill mucous cell density and reduction in apparent lamellar surface area; initially elevated blood–water diffusion distances returned to normal after 34 d, but the reduction in apparent surface area persisted. Chronic exposure to acid alone (pH 5.2, same water chemistry) caused no morphometric changes but resulted in persistent impairment of Ucrit (critical aerobic swimming speed) by about 10%. This was due to increased oxygen requirements at subcritical swimming speeds (loading stress) and was alleviated when trout were swum at pH 6.5 (zero Al) on day 36. In trout preexposed to sublethal Al, Ucrit was chronically impaired by approximately 16% due to loading stresses and reduction in the maximum rate of oxygen uptake, Mo2max (limiting stress); Ucrit and Mo2max remained depressed even when fish were swum at pH 6.5 (zero Al). Reduced gill area compromises the aerobic scope for activity but may be an unavoidable cost of acclimation to Al.


Sign in / Sign up

Export Citation Format

Share Document