Fatigue of mouse soleus muscle, using the work loop technique.

1997 ◽  
Vol 200 (22) ◽  
pp. 2907-2912 ◽  
Author(s):  
G N Askew ◽  
I S Young ◽  
J D Altringham

The function of many muscles requires that they perform work. Fatigue of mouse soleus muscle was studied in vitro by subjecting it to repeated work loop cycles. Fatigue resulted in a reduction in force, a slowing of relaxation and in changes in the force-velocity properties of the muscle (indicated by changes in work loop shape). These effects interacted to reduce the positive work and to increase the negative work performed by the muscle, producing a decline in net work. Power output was sustained for longer and more cumulative work was performed with decreasing cycle frequency. However, absolute power output was highest at 5 Hz (the cycle frequency for maximum power output) until power fell below 20% of peak power. As cycle frequency increased, slowing of relaxation had greater effects in reducing the positive work and increasing the negative work performed by the muscle, compared with lower cycle frequencies.

2009 ◽  
Vol 87 (3) ◽  
pp. 203-210 ◽  
Author(s):  
George Vassilakos ◽  
Rob. S. James ◽  
Valerie M. Cox

The effects of electrical stimulation frequency on force, work loop power output, and fatigue of mouse soleus muscle were investigated in vitro at 35 °C. Increasing stimulation frequency did not significantly affect maximal isometric tetanic stress (overall mean ± SD, 205 ± 16.6 kN·m–2 between 70 and 160 Hz) but did significantly increase the rate of force generation. The maximal net power output during work loops significantly increased with stimulation frequency: 18.2 ± 3.7, 22.5 ± 3.3, 26.8 ± 3.7, and 28.6 ± 3.4 W·kg–1 at 70, 100, 130, and 160 Hz, respectively. The stimulation frequency that was used affected the pattern of fatigue observed during work loop studies. At stimulation frequencies of 100 and 130 Hz, there were periods of mean net negative work during the fatigue tests due to a slowing of relaxation rate. In contrast, mean net work remained positive throughout the fatigue test when stimulation frequencies of 70 and 160 Hz were used. The highest cumulative work during the fatigue test was performed at 70 and 160 Hz, followed by 130 Hz, then 100 Hz. Therefore, stimulation frequency affects power output and the pattern of fatigue in mouse soleus muscle.


2002 ◽  
Vol 205 (2) ◽  
pp. 189-200
Author(s):  
Douglas A. Syme ◽  
Robert E. Shadwick

SUMMARY The mechanical power output of deep, red muscle from skipjack tuna (Katsuwonus pelamis) was studied to investigate (i) whether this muscle generates maximum power during cruise swimming, (ii) how the differences in strain experienced by red muscle at different axial body locations affect its performance and (iii) how swimming speed affects muscle work and power output. Red muscle was isolated from approximately mid-way through the deep wedge that lies next to the backbone; anterior (0.44 fork lengths, ANT) and posterior (0.70 fork lengths, POST) samples were studied. Work and power were measured at 25°C using the work loop technique. Stimulus phases and durations and muscle strains (±5.5 % in ANT and ±8 % in POST locations) experienced during cruise swimming at different speeds were obtained from previous studies and used during work loop recordings. In addition, stimulus conditions that maximized work were determined. The stimulus durations and phases yielding maximum work decreased with increasing cycle frequency (analogous to tail-beat frequency), were the same at both axial locations and were almost identical to those used by the fish during swimming, indicating that the muscle produces near-maximal work under most conditions in swimming fish. While muscle in the posterior region undergoes larger strain and thus produces more mass-specific power than muscle in the anterior region, when the longitudinal distribution of red muscle mass is considered, the anterior muscles appear to contribute approximately 40 % more total power. Mechanical work per length cycle was maximal at a cycle frequency of 2–3 Hz, dropping to near zero at 15 Hz and by 20–50 % at 1 Hz. Mechanical power was maximal at a cycle frequency of 5 Hz, dropping to near zero at 15 Hz. These fish typically cruise with tail-beat frequencies of 2.8–5.2 Hz, frequencies at which power from cyclic contractions of deep red muscles was 75–100 % maximal. At any given frequency over this range, power using stimulation conditions recorded from swimming fish averaged 93.4±1.65 % at ANT locations and 88.6±2.08 % at POST locations (means ± s.e.m., N=3–6) of the maximum using optimized conditions. When cycle frequency was held constant (4 Hz) and strain amplitude was increased, work and power increased similarly in muscles from both sample sites; work and power increased 2.5-fold when strain was elevated from ±2 to ±5.5 %, but increased by only approximately 12 % when strain was raised further from ±5.5 to ±8 %. Taken together, these data suggest that red muscle fibres along the entire body are used in a similar fashion to produce near-maximal mechanical power for propulsion during normal cruise swimming. Modelling suggests that the tail-beat frequency at which power is maximal (5 Hz) is very close to that used at the predicted maximum aerobic swimming speed (5.8 Hz) in these fish.


1997 ◽  
Vol 200 (3) ◽  
pp. 503-509
Author(s):  
J Layland ◽  
I S Young ◽  
J D Altringham

The work loop technique was used to examine the effects of adrenaline on the mechanics of cardiac muscle contraction in vitro. The length for maximum active force (Lmax) and net work production (Lopt) for rat papillary muscles was determined under control conditions (without adrenaline). The concentration of adrenaline producing the maximum inotropic effect was determined. This concentration was used in the remainder of the experiments. Sinusoidal strain cycles about Lopt were performed over a physiologically relevant range of cycle frequencies (4-11 Hz). Maximum work and the frequency for maximum work increased from 1.91 J kg-1 at 3 Hz in controls to 2.97 J kg-1 at 6 Hz with adrenaline. Similarly, maximum power output and the frequency for maximum power output (fopt) increased from 8.62 W kg-1 at 6 Hz in controls to 19.95 W kg-1 at 8 Hz with adrenaline. We suggest that the power-frequency relationship, derived using the work loop technique, represents a useful index with which to assess the effects of pharmacological interventions on cardiac muscle contractility.


2000 ◽  
Vol 89 (6) ◽  
pp. 2215-2219 ◽  
Author(s):  
Bill T. Ameredes ◽  
Wen-Zhi Zhan ◽  
Y. S. Prakash ◽  
Rene Vandenboom ◽  
Gary C. Sieck

We hypothesized that decrements in maximum power output (W˙max) of the rat diaphragm (Dia) muscle with repetitive activation are due to a disproportionate reduction in force (force fatigue) compared with a slowing of shortening velocity (velocity fatigue). Segments of midcostal Dia muscle were mounted in vitro (26°C) and stimulated directly at 75 Hz in 400-ms-duration trains repeated each second (duty cycle = 0.4) for 120 s. A novel technique was used to monitor instantaneous reductions in maximum specific force (Po) andW˙max during fatigue. During each stimulus train, activation was isometric for the initial 360 ms during which Po was measured; the muscle was then allowed to shorten at a constant velocity (30% V max) for the final 40 ms, and W˙max was determined. Compared with initial values, after 120 s of repetitive activation, Po andW˙max decreased by 75 and 73%, respectively. Maximum shortening velocity was measured in two ways: by extrapolation of the force-velocity relationship ( V max) and using the slack test [maximum unloaded shortening velocity ( V o)]. After 120 s of repetitive activation, V max slowed by 44%, whereas V o slowed by 22%. Thus the decrease inW˙max with repetitive activation was dominated by force fatigue, with velocity fatigue playing a secondary role. On the basis of a greater slowing of V max vs. V o, we also conclude that force and power fatigue cannot be attributed simply to the total inactivation of the most fatigable fiber types.


2009 ◽  
Vol 106 (2) ◽  
pp. 378-384 ◽  
Author(s):  
H. Roots ◽  
G. Ball ◽  
J. Talbot-Ponsonby ◽  
M. King ◽  
K. McBeath ◽  
...  

In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C ( n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue.


1994 ◽  
Vol 192 (1) ◽  
pp. 207-224 ◽  
Author(s):  
M Tu ◽  
M Dickinson

Of the 17 muscles responsible for flight control in flies, only the first basalar muscle (b1) is known to fire an action potential each and every wing beat at a precise phase of the wing-beat period. The phase of action potentials in the b1 is shifted during turns, implicating the b1 in the control of aerodynamic yaw torque. We used the work loop technique to quantify the effects of phase modulation on the mechanical output of the b1 of the blowfly Calliphora vicina. During cyclic length oscillations at 10 and 50 Hz, the magnitude of positive work output by the b1 was similar to that measured previously from other insect muscles. However, when tested at wing-beat frequency (150 Hz), the net work performed in each cycle was negative. The twitch kinetics of the b1 suggest that negative work output reflects intrinsic specializations of the b1 muscle. Our results suggest that, in addition to a possible role as a passive elastic element, the phase-sensitivity of its mechanical properties may endow the b1 with the capacity to modulate wing-beat kinematics during turning maneuvers.


1997 ◽  
Vol 200 (24) ◽  
pp. 3119-3131 ◽  
Author(s):  
G N Askew ◽  
R L Marsh

The effects of length trajectory on the mechanical power output of mouse soleus and extensor digitorum longus (EDL) muscles were investigated using the work loop technique in vitro at 37 degrees C. Muscles were subjected to sinusoidal and sawtooth cycles of lengthening and shortening; for the sawtooth cycles, the proportion of the cycle spent shortening was varied. For each cycle frequency examined, the timing and duration of stimulation and the strain amplitude were optimized to yield the maximum power output. During sawtooth length trajectories, power increased as the proportion of the cycle spent shortening increased. The increase in power was attributable to more complete activation of the muscle due to the longer stimulation duration, to a more rapid rise in force resulting from increased stretch velocity and to an increase in the optimal strain amplitude. The power produced during symmetrical sawtooth cycles was 5-10 % higher than during sinusoidal work loops. Maximum power outputs of 92 W kg-1 (soleus) and 247 W kg-1 (EDL) were obtained by manipulating the length trajectory. For each muscle, this was approximately 70 % of the maximum power output estimated from the isotonic force-velocity relationship. We have found a number of examples suggesting that animals exploit prolonging the shortening phase during activities requiring a high power output, such as flying, jet-propulsion swimming and vocalization. In an evolutionary context, increasing the relative shortening duration provides an alternative to increasing the maximum shortening velocity (Vmax) as a way to increase power output.


2009 ◽  
Vol 107 (4) ◽  
pp. 1156-1164 ◽  
Author(s):  
Seung Jun Choi ◽  
Jeffrey J. Widrick

Many physical activities can induce both transient and long-lasting muscle dysfunction. The separate and interactive effects of short-term fatigue and long-lasting contraction-induced damage were evaluated in an in vitro mouse soleus preparation (35°C) using the work loop technique. Repetitive fatiguing work loops reduced positive work (work produced by the muscle), increased negative work (work required to reextend the muscle), and reduced cyclical power (net work/time) immediately after treatment. These changes were readily reversible. The fatigue treatment had no long-term effects on optimal muscle length ( Lo) and isometric force (Po). High strain lengthening work loops, where the muscle contracted eccentrically, resulted in both immediate and long-lasting positive work, power, and Po deficits as well as a shift in Lo to longer lengths. When the treatments were combined, i.e., fatigued muscles subjected to eccentric activity, the immediate power deficit exceeded the sum of the power deficits noted for the other two treatments. Much of this effect was due to an exaggerated rise in negative work. However, in the long term, power and Po deficits and the shift in Lo were reduced compared with the damage-only treatment. These results show that 1) the immediate effects of combined fatigue and damage on cyclical power are synergistic, in large part because of a reduced ability of the muscle to relax; and 2) fatigued muscles are less susceptible to long-term contraction-induced dysfunction. Fatigue may protect against long-term damage by reducing the probability that sarcomeres are lengthened beyond myofilament overlap.


1994 ◽  
Vol 267 (2) ◽  
pp. R481-R488 ◽  
Author(s):  
T. P. Johnson ◽  
D. A. Syme ◽  
B. C. Jayne ◽  
G. V. Lauder ◽  
A. F. Bennett

We recorded electromyograms of slow-twitch (red) muscle fibers and videotaped swimming in the largemouth bass (Micropterus salmoides) during cruise, burst-and-glide, and C-start maneuvers. By use of in vivo patterns of stimulation and estimates of strain, in vitro power output was measured at 20 degrees C with the oscillatory work loop technique on slow-twitch fiber bundles from the midbody area near the soft dorsal fin. Power output increased slightly with cycle frequency to a plateau of approximately 10 W/kg at 3-5 Hz, encompassing the normal range of tail-beat frequencies for steady swimming (approximately 2-4 Hz). Power output declined at cycle frequencies simulating unsteady swimming (burst-and-glide, 10 Hz; C-start, 15 Hz). However, activating the muscle at 10 Hz did significantly increase the net work done compared with the work produced by the inactive muscle (work done by the viscous and elastic components). Thus this study provides further insight into the apparently paradoxical observation that red muscle can contribute little or no power and yet continues to show some recruitment during unsteady swimming. Comparison with published values of power requirements from oxygen consumption measurements indicates a limit to steady swimming speed imposed by the maximum power available from red muscle.


1991 ◽  
Vol 157 (1) ◽  
pp. 409-423 ◽  
Author(s):  
TIMOTHY P. JOHNSON ◽  
IAN A. JOHNSTON

Fast muscle fibres were isolated from the abdominal myotomes of the shorthorned sculpin Myoxocephalus scorpius L. Sinusoidal length changes were imposed about resting muscle length and fibres were stimulated at a selected phase during the strain cycle. The work output per cycle was calculated from the area of the resulting force-position loops. The strain amplitude required for maximum work per cycle had a distinct optimum at ±5 % of resting length, which was independent of temperature. Maximum positive work loops were obtained by retarding the stimulus relative to the start of the length-change cycle by 30° (full cycle=360°). The maximum negative work output was obtained with a 210° stimulus phase shift. At intermediate stimulus phase shifts, work loops became complex with both positive (anticlockwise) and negative (clockwise) components. The number and timing of stimuli were adjusted, at constant strain amplitude (±5% of resting muscle length), to optimize net positive work output over a range of cycle frequencies. The cycle frequency required for maximum power output (work per cycle times cycle frequency) increased from around 5–7 Hz at 4°C to 9–13 Hz at 15°C. The maximum tension generated per cycle at 15°C was around two times higher at all cycle frequencies in summer-relative to winter-acclimatized fish. Fast muscle fibres from summer fish produced consistently higher tensions at 4°C, but the differences were only significant at 15 Hz. Acclimatization also modified the relationship between peak length and peak force at 4°C and 15°C. The maximum power output of muscle fibres showed little seasonal variation at 4°C and was in the range 20–25 W kg−1. In contrast, at 15°C, maximum muscle power output increased from 9 W kg−1 in the winter- to 30 W kg−1 in the summeracclimatized fish


Sign in / Sign up

Export Citation Format

Share Document