scholarly journals MODULATION OF NEGATIVE WORK OUTPUT FROM A STEERING MUSCLE OF THE BLOWFLY CALLIPHORA VICINA

1994 ◽  
Vol 192 (1) ◽  
pp. 207-224 ◽  
Author(s):  
M Tu ◽  
M Dickinson

Of the 17 muscles responsible for flight control in flies, only the first basalar muscle (b1) is known to fire an action potential each and every wing beat at a precise phase of the wing-beat period. The phase of action potentials in the b1 is shifted during turns, implicating the b1 in the control of aerodynamic yaw torque. We used the work loop technique to quantify the effects of phase modulation on the mechanical output of the b1 of the blowfly Calliphora vicina. During cyclic length oscillations at 10 and 50 Hz, the magnitude of positive work output by the b1 was similar to that measured previously from other insect muscles. However, when tested at wing-beat frequency (150 Hz), the net work performed in each cycle was negative. The twitch kinetics of the b1 suggest that negative work output reflects intrinsic specializations of the b1 muscle. Our results suggest that, in addition to a possible role as a passive elastic element, the phase-sensitivity of its mechanical properties may endow the b1 with the capacity to modulate wing-beat kinematics during turning maneuvers.

1997 ◽  
Vol 200 (22) ◽  
pp. 2907-2912 ◽  
Author(s):  
G N Askew ◽  
I S Young ◽  
J D Altringham

The function of many muscles requires that they perform work. Fatigue of mouse soleus muscle was studied in vitro by subjecting it to repeated work loop cycles. Fatigue resulted in a reduction in force, a slowing of relaxation and in changes in the force-velocity properties of the muscle (indicated by changes in work loop shape). These effects interacted to reduce the positive work and to increase the negative work performed by the muscle, producing a decline in net work. Power output was sustained for longer and more cumulative work was performed with decreasing cycle frequency. However, absolute power output was highest at 5 Hz (the cycle frequency for maximum power output) until power fell below 20% of peak power. As cycle frequency increased, slowing of relaxation had greater effects in reducing the positive work and increasing the negative work performed by the muscle, compared with lower cycle frequencies.


1995 ◽  
Vol 198 (10) ◽  
pp. 2221-2227 ◽  
Author(s):  
D A Syme ◽  
R K Josephson

The work capacity of segments of atrial and ventricular muscle from the frog Rana pipiens was measured as a function of muscle length using the work loop technique. Both the work done during shortening and the work required to re-lengthen the muscle after shortening increased with muscle length. Net work increased with length up to a maximum, beyond which work declined. The optimum sarcomere length for work output was 2.5-2.6 microns for both atrial and ventricular muscle. Isometric force increased with muscle length to lengths well beyond the optimum for work output. Thus, the decline in work at long lengths is not simply a consequence of a reduction in the capacity of heart muscle to generate force. It is proposed that it is the non-linear increase in work required to re-lengthen muscle with increasing muscle length which limits net work output and leads to a maximum in the relationship between net work and muscle length. Extension of the results from muscle strips to intact hearts suggests that the work required to fill the ventricle exceeds that available from atrial muscle at all but rather short ventricular muscle lengths.


1997 ◽  
Vol 273 (3) ◽  
pp. C1049-C1056 ◽  
Author(s):  
V. J. Caiozzo ◽  
K. M. Baldwin

The objective of this study was to estimate the limitations imposed by the kinetics of activation and relaxation on the ability of slow skeletal muscle to produce mechanical work. These estimates were made by the following methods: 1) using the work loop technique and measuring the actual mechanical work (WA) produced by rat soleus muscles (n = 6) at four different frequencies (0.5, 1, 2, and 4 Hz) and seven different amplitudes of length change (1, 2, 3, 4, 5, 6, and 7 mm); 2) determining the force-velocity relationships of the soleus muscles and using this data to quantify the theoretical mechanical work (WT) that could be produced under the work loop conditions described above; and 3) subtracting WA from WT. The difference between WT and WA was interpreted to represent limitations imposed by activation and relaxation. Under certain conditions (high frequency, small strain), factors controlling the kinetics of activation and relaxation reduced the mechanical work of the soleus muscle by approximately 60%. Hence, activation and relaxation collectively represent important factors limiting the production of mechanical work by slow skeletal muscle.


1992 ◽  
Vol 119 (6) ◽  
pp. 1523-1539 ◽  
Author(s):  
J Warmke ◽  
M Yamakawa ◽  
J Molloy ◽  
S Falkenthal ◽  
D Maughan

We have used a combination of classical genetic, molecular genetic, histological, biochemical, and biophysical techniques to identify and characterize a null mutation of the myosin light chain-2 (MLC-2) locus of Drosophila melanogaster. Mlc2E38 is a null mutation of the MLC-2 gene resulting from a nonsense mutation at the tenth codon position. Mlc2E38 confers dominant flightless behavior that is associated with reduced wing beat frequency. Mlc2E38 heterozygotes exhibit a 50% reduction of MLC-2 mRNA concentration in adult thoracic musculature, which results in a commensurate reduction of MLC-2 protein in the indirect flight muscles. Indirect flight muscle myofibrils from Mlc2E38 heterozygotes are aberrant, exhibiting myofilaments in disarray at the periphery. Calcium-activated Triton X-100-treated single fiber segments exhibit slower contraction kinetics than wild type. Introduction of a transformed copy of the wild type MLC-2 gene rescues the dominant flightless behavior of Mlc2E38 heterozygotes. Wing beat frequency and single fiber contraction kinetics of a representative rescued line are not significantly different from those of wild type. Together, these results indicate that wild type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function. Furthermore, these results suggest that the reduced wing beat frequency and possibly the flightless behavior conferred by Mlc2E38 is due in part to slower contraction kinetics of sarcomeric regions devoid or partly deficient in MLC-2.


Apidologie ◽  
2021 ◽  
Author(s):  
Antonio R. S. Parmezan ◽  
Vinicius M. A. Souza ◽  
Indrė Žliobaitė ◽  
Gustavo E. A. P. A. Batista

2007 ◽  
Vol 274 (1612) ◽  
pp. 913-917 ◽  
Author(s):  
Robert B Srygley

Many unpalatable butterfly species use coloration to signal their distastefulness to birds, but motion cues may also be crucial to ward off predatory attacks. In previous research, captive passion-vine butterflies Heliconius mimetic in colour pattern were also mimetic in motion. Here, I investigate whether wing motion changes with the flight demands of different behaviours. If birds select for wing motion as a warning signal, aposematic butterflies should maintain wing motion independently of behavioural context. Members of one mimicry group ( Heliconius cydno and Heliconius sapho ) beat their wings more slowly and their wing strokes were more asymmetric than their sister-species ( Heliconius melpomene and Heliconius erato , respectively), which were members of another mimicry group having a quick and steady wing motion. Within mimicry groups, wing beat frequency declined as its role in generating lift also declined in different behavioural contexts. In contrast, asymmetry of the stroke was not associated with wing beat frequency or behavioural context—strong indication that birds process and store the Fourier motion energy of butterfly wings. Although direct evidence that birds respond to subtle differences in butterfly wing motion is lacking, birds appear to generalize a motion pattern as much as they encounter members of a mimicry group in different behavioural contexts.


Genetics ◽  
1981 ◽  
Vol 98 (3) ◽  
pp. 549-564
Author(s):  
James W Curtsinger ◽  
Cathy C Laurie-Ahlberg

ABSTRACT The mechanical power imparted to the wings during tethered flight of Drosophila melanogaster is estimated from wing-beat frequency, wing-stroke amplitude and various aspects of wing morphology by applying the steady-state aerodynamics model of insect flight developed by Weis-Fogh (1972, 1973). Wing-beat frequency, the major determinant of power output, is highly correlated with the rate of oxygen consumption. Estimates of power generated during flight should closely reflect rates of ATP production in the flight muscles, since flies do not acquire an oxygen debt or accumulate ATP during flight. In an experiment using 21 chromosome 2 substitution lines, lines were a significant source of variation for all flight parameters measured. Broadsense heritabilities ranged from 0.16 for wing-stroke amplitude to 0.44 for inertial power. The variation among lines is not explained by variation in total body size (i.e., live weight). Line differences in flight parameters are robust with respect to age, ambient temperature and duration of flight. These results indicate that characterization of the power output during tethered flight will provide a sensitive experimental system for detecting the physiological effects of variation in the structure or quantity of the enzymes involved in flight metabolism.


Zoosymposia ◽  
2011 ◽  
Vol 5 (1) ◽  
pp. 297-318
Author(s):  
W. Geoff McIlleron ◽  
Ferdinand C. De Moor

Whereas photography of insects at rest is used for a wide variety of purposes, including illustrating publications and aiding their identification, photography of insects in flight is more challenging and little practiced. This paper describes a system that uses a digital single-lens-reflex camera combined with commercial-level flashes (with electronic power settings to give very short exposures) and simple electronics in a rig that can be used to capture high quality images of night-flying insects. With such a rig, hundreds of images of free flying Trichoptera have been obtained. Preliminary observations of night-flying Athripsodes bergensis (Leptoceridae) indicate that this system could be used for studying the mechanics of flight, wing beat frequency, aerodynamics, flying speed, aerial activity, and behavioural ecology of night-flying insects in their natural environment.      This paper briefly describes the technique as applied at a site on the banks of the Groot River in the southern Cape region of South Africa between October 2008 and April 2009 and presents a selection of the images obtained.


2017 ◽  
Vol 33 (1) ◽  
pp. 56-63 ◽  
Author(s):  
D.S. Blaise Williams ◽  
Jonathan H. Cole ◽  
Douglas W. Powell

Running during sports and for physical activity often requires changes in velocity through acceleration and deceleration. While it is clear that lower extremity biomechanics vary during these accelerations and decelerations, the work requirements of the individual joints are not well understood. The purpose of this investigation was to measure the sagittal plane mechanical work of the individual lower extremity joints during acceleration, deceleration, and steady-state running. Ten runners were compared during acceleration, deceleration, and steady-state running using three-dimensional kinematics and kinetics measures. Total positive and negative joint work, and relative joint contributions to total work were compared between conditions. Total positive work progressively increased from deceleration to acceleration. This was due to greater ankle joint work during acceleration. While there was no significant change in total negative work during deceleration, there was a greater relative contribution of the knee to total negative work with a subsequent lower relative ankle negative work. Each lower extremity joint exhibits distinct functional roles in acceleration compared with deceleration during level running. Deceleration is dominated by greater contributions of the knee to negative work while acceleration is associated with a greater ankle contribution to positive work.


2002 ◽  
Vol 205 (2) ◽  
pp. 189-200
Author(s):  
Douglas A. Syme ◽  
Robert E. Shadwick

SUMMARY The mechanical power output of deep, red muscle from skipjack tuna (Katsuwonus pelamis) was studied to investigate (i) whether this muscle generates maximum power during cruise swimming, (ii) how the differences in strain experienced by red muscle at different axial body locations affect its performance and (iii) how swimming speed affects muscle work and power output. Red muscle was isolated from approximately mid-way through the deep wedge that lies next to the backbone; anterior (0.44 fork lengths, ANT) and posterior (0.70 fork lengths, POST) samples were studied. Work and power were measured at 25°C using the work loop technique. Stimulus phases and durations and muscle strains (±5.5 % in ANT and ±8 % in POST locations) experienced during cruise swimming at different speeds were obtained from previous studies and used during work loop recordings. In addition, stimulus conditions that maximized work were determined. The stimulus durations and phases yielding maximum work decreased with increasing cycle frequency (analogous to tail-beat frequency), were the same at both axial locations and were almost identical to those used by the fish during swimming, indicating that the muscle produces near-maximal work under most conditions in swimming fish. While muscle in the posterior region undergoes larger strain and thus produces more mass-specific power than muscle in the anterior region, when the longitudinal distribution of red muscle mass is considered, the anterior muscles appear to contribute approximately 40 % more total power. Mechanical work per length cycle was maximal at a cycle frequency of 2–3 Hz, dropping to near zero at 15 Hz and by 20–50 % at 1 Hz. Mechanical power was maximal at a cycle frequency of 5 Hz, dropping to near zero at 15 Hz. These fish typically cruise with tail-beat frequencies of 2.8–5.2 Hz, frequencies at which power from cyclic contractions of deep red muscles was 75–100 % maximal. At any given frequency over this range, power using stimulation conditions recorded from swimming fish averaged 93.4±1.65 % at ANT locations and 88.6±2.08 % at POST locations (means ± s.e.m., N=3–6) of the maximum using optimized conditions. When cycle frequency was held constant (4 Hz) and strain amplitude was increased, work and power increased similarly in muscles from both sample sites; work and power increased 2.5-fold when strain was elevated from ±2 to ±5.5 %, but increased by only approximately 12 % when strain was raised further from ±5.5 to ±8 %. Taken together, these data suggest that red muscle fibres along the entire body are used in a similar fashion to produce near-maximal mechanical power for propulsion during normal cruise swimming. Modelling suggests that the tail-beat frequency at which power is maximal (5 Hz) is very close to that used at the predicted maximum aerobic swimming speed (5.8 Hz) in these fish.


Sign in / Sign up

Export Citation Format

Share Document