Cross-linking and electron microscopy studies of the structure and functioning of the Escherichia coli ATP synthase

2000 ◽  
Vol 203 (1) ◽  
pp. 29-33 ◽  
Author(s):  
R.A. Capaldi ◽  
B. Schulenberg ◽  
J. Murray ◽  
R. Aggeler

ATP synthase, also called F(1)F(o)-ATPase, catalyzes the synthesis of ATP during oxidative phosphorylation. The enzyme is reversible and is able to use ATP to drive a proton gradient for transport purposes. Our work has focused on the enzyme from Escherichia coli (ECF(1)F(o)). We have used a combination of methods to study this enzyme, including electron microscopy and chemical cross-linking. The utility of these two approaches in particular, and the important insights they give into the structure and mechanism of the ATP synthase, are reviewed.

1985 ◽  
Vol 229 (2) ◽  
pp. 453-458 ◽  
Author(s):  
M Okada ◽  
S Natori

When Escherichia coli was treated with sarcotoxin I, a potent bactericidal protein of Sarcophaga peregrina (fleshfly), K+ inside of the cells leaked out rapidly and the ATP pool of the cells rapidly decreased. These results suggested that the bactericidal effect of sarcotoxin I was due to its ionophore activity, and that it blocked the generation of ATP by inhibiting formation of the proton gradient essential for oxidative phosphorylation. This was confirmed by use of an uncA mutant, which was much less susceptible than the wild-type strain to sarcotoxin I under fixed ionic conditions.


1999 ◽  
Vol 181 (10) ◽  
pp. 3281-3283 ◽  
Author(s):  
Niek Dekker ◽  
Jan Tommassen ◽  
Hubertus M. Verheij

ABSTRACT Bacteriocin release protein is known to activate outer membrane phospholipase A (OMPLA), which results in the release of colicin fromEscherichia coli. In vivo chemical cross-linking experiments revealed that the activation coincides with dimerization of OMPLA. Permeabilization of the cell envelope and dimerization were characterized by a lag time of 2 h.


2012 ◽  
Vol 136 ◽  
pp. S74 ◽  
Author(s):  
Nicholas I. Bradshaw ◽  
Dinesh C. Soares ◽  
Juan Zou ◽  
Christopher K. Kennaway ◽  
Zhou Angel Chen ◽  
...  

2010 ◽  
Vol 192 (13) ◽  
pp. 3474-3483 ◽  
Author(s):  
Patrick D. Scheu ◽  
Yun-Feng Liao ◽  
Julia Bauer ◽  
Holger Kneuper ◽  
Thomas Basché ◽  
...  

ABSTRACT DcuS is the membrane-integral sensor histidine kinase of the DcuSR two-component system in Escherichia coli that responds to extracellular C4-dicarboxylates. The oligomeric state of full-length DcuS was investigated in vitro and in living cells by chemical cross-linking and by f luorescence r esonance e nergy t ransfer (FRET) spectroscopy. The FRET results were quantified by an improved method using background-free spectra of living cells for determining FRET efficiency (E) and donor fraction {fD = (donor)/[(donor) + (acceptor)]}. Functional fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein to DcuS were used for in vivo FRET measurements. Based on noninteracting membrane proteins and perfectly interacting proteins (a CFP-YFP fusion), the results of FRET of cells coexpressing DcuS-CFP and DcuS-YFP were quantitatively evaluated. In living cells and after reconstitution of purified recombinant DcuS in proteoliposomes, DcuS was found as a dimer or higher oligomer, independent of the presence of an effector. Chemical cross-linking with disuccinimidyl suberate showed tetrameric, in addition to dimeric, DcuS in proteoliposomes and in membranes of bacteria, whereas purified DcuS in nondenaturing detergent was mainly monomeric. The presence and amount of tetrameric DcuS in vivo and in proteoliposomes was not dependent on the concentration of DcuS. Only membrane-embedded DcuS (present in the oligomeric state) is active in (auto)phosphorylation. Overall, the FRET and cross-linking data demonstrate the presence in living cells, in bacterial membranes, and in proteoliposomes of full-length DcuS protein in an oligomeric state, including a tetramer.


Sign in / Sign up

Export Citation Format

Share Document