scholarly journals Thermal tolerance and hypoxia tolerance are associated in blacktip reef shark (Carcharhinus melanopterus) neonates

2020 ◽  
Vol 223 (14) ◽  
pp. jeb221937
Author(s):  
Ian A. Bouyoucos ◽  
Phillip R. Morrison ◽  
Ornella C. Weideli ◽  
Eva Jacquesson ◽  
Serge Planes ◽  
...  

ABSTRACTThermal dependence of growth and metabolism can influence thermal preference and tolerance in marine ectotherms, including threatened and data-deficient species. Here, we quantified the thermal dependence of physiological performance in neonates of a tropical shark species (blacktip reef shark, Carcharhinus melanopterus) from shallow, nearshore habitats. We measured minimum and maximum oxygen uptake rates (ṀO2), calculated aerobic scope, excess post-exercise oxygen consumption and recovery from exercise, and measured critical thermal maxima (CTmax), thermal safety margins, hypoxia tolerance, specific growth rates, body condition and food conversion efficiencies at two ecologically relevant acclimation temperatures (28 and 31°C). Owing to high post-exercise mortality, a third acclimation temperature (33°C) was not investigated further. Acclimation temperature did not affect ṀO2 or growth, but CTmax and hypoxia tolerance were greatest at 31°C and positively associated. We also quantified in vitro temperature (25, 30 and 35°C) and pH effects on haemoglobin–oxygen (Hb–O2) affinity of wild-caught, non-acclimated sharks. As expected, Hb–O2 affinity decreased with increasing temperatures, but pH effects observed at 30°C were absent at 25 and 35°C. Finally, we logged body temperatures of free-ranging sharks and determined that C. melanopterus neonates avoided 31°C in situ. We conclude that C. melanopterus neonates demonstrate minimal thermal dependence of whole-organism physiological performance across a seasonal temperature range and may use behaviour to avoid unfavourable environmental temperatures. The association between thermal tolerance and hypoxia tolerance suggests a common mechanism warranting further investigation. Future research should explore the consequences of ocean warming, especially in nearshore, tropical species.

2019 ◽  
Vol 374 (1778) ◽  
pp. 20190036 ◽  
Author(s):  
Jennifer Sunday ◽  
Joanne M. Bennett ◽  
Piero Calosi ◽  
Susana Clusella-Trullas ◽  
Sarah Gravel ◽  
...  

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Rachael Morgan ◽  
Josefin Sundin ◽  
Mette H Finnøen ◽  
Gunnar Dresler ◽  
Marc Martínez Vendrell ◽  
...  

Abstract Model organisms can be useful for studying climate change impacts, but it is unclear whether domestication to laboratory conditions has altered their thermal tolerance and therefore how representative of wild populations they are. Zebrafish in the wild live in fluctuating thermal environments that potentially reach harmful temperatures. In the laboratory, zebrafish have gone through four decades of domestication and adaptation to stable optimal temperatures with few thermal extremes. If maintaining thermal tolerance is costly or if genetic traits promoting laboratory fitness at optimal temperature differ from genetic traits for high thermal tolerance, the thermal tolerance of laboratory zebrafish could be hypothesized to be lower than that of wild zebrafish. Furthermore, very little is known about the thermal environment of wild zebrafish and how close to their thermal limits they live. Here, we compared the acute upper thermal tolerance (critical thermal maxima; CTmax) of wild zebrafish measured on-site in West Bengal, India, to zebrafish at three laboratory acclimation/domestication levels: wild-caught, F1 generation wild-caught and domesticated laboratory AB-WT line. We found that in the wild, CTmax increased with increasing site temperature. Yet at the warmest site, zebrafish lived very close to their thermal limit, suggesting that they may currently encounter lethal temperatures. In the laboratory, acclimation temperature appeared to have a stronger effect on CTmax than it did in the wild. The fish in the wild also had a 0.85–1.01°C lower CTmax compared to all laboratory populations. This difference between laboratory-held and wild populations shows that environmental conditions can affect zebrafish’s thermal tolerance. However, there was no difference in CTmax between the laboratory-held populations regardless of the domestication duration. This suggests that thermal tolerance is maintained during domestication and highlights that experiments using domesticated laboratory-reared model species can be appropriate for addressing certain questions on thermal tolerance and global warming impacts.


1998 ◽  
Vol 45 (1-10) ◽  
pp. 443-445 ◽  
Author(s):  
V. Briones ◽  
A. Fernández ◽  
M. Blanco ◽  
F. Ramiro ◽  
M. L. Vicente ◽  
...  

2007 ◽  
Vol 57 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Yi-Xin Bao ◽  
Wei-Guo Du ◽  
Lin Shu ◽  
Yi-Wei Lu

AbstractVariation in the physiological performance and behaviour of ectotherms as a result of changes in body temperature can affect important life-history traits. Studies investigating the effects of temperature on physiological performance and behaviour have thus clear ecological significance. We captured juvenile blue-tailed skinks, Eumeces elegans, from a population in Zhejiang, eastern China, and determined the effects of temperature on their food assimilation and locomotor performance. Food intake of the juveniles generally increased with increase in temperatures within the range of 24-30°C and decreased at higher temperatures. The temperature significantly affected the apparent digestive coefficient (ADC) and the assimilation efficiency (AE) of juveniles; the ADC and AE of the skinks at 32°C were higher than those of skinks at other temperatures. The sprint speed increased with increase in temperature within the range of 12-32°C and decreased at higher temperatures. These results suggest the patterns of thermal sensitivity may differ in various functional performances, and hence support the 'multiple optima hypothesis', which suggests that no specific temperature maximises all functional performance. In addition, this study indicates significant between-age difference in thermal physiology by comparing our data with those on adult skinks, including different thermal sensitivity of AE, and different ranges of thermal-performance breadth for food intake and locomotor performance between juvenile and adult E. elegans.


2014 ◽  
Vol 71 (7) ◽  
pp. 1096-1105 ◽  
Author(s):  
Chantelle M. Penney ◽  
Gordon W. Nash ◽  
A. Kurt Gamperl

In this first study examining the thermal tolerance of adult Arctic char (Salvelinus alpinus) acclimated to seawater, we measured their critical thermal maximum (CTMax) and several cardiorespiratory parameters (oxygen consumption (MO2), heart rate (fH), stroke volume (SV), cardiac output (Q), ventilatory frequency (VF), opercular pressure (PO), and ventilatory effort (VE)) when exposed to a temperature increase of 2 °C·h−1. Further, we directly compared these results with those obtained for the eurythermal Atlantic salmon (Salmo salar) under identical conditions. There was no significant difference in cardiorespiratory values between the two species at their acclimation temperature (9.5–10 °C). In contrast, the slope of the MO2–temperature relationship was lower (by 27%) in the char as compared with that in the salmon, and the char had significantly lower values for maximum fH (by 13%), maximum MO2 (by 35%), absolute metabolic scope (by 39%), and CTMax (approximately 23 versus 26.5 °C, respectively). Although not a focus of the study, preliminary data suggest that interspecific differences in mitochondrial respiration (oxidative phosphorylation), and its temperature sensitivity, may partially explain the difference in thermal tolerance between the two species. These results provide considerable insights into why Atlantic salmon are displacing Arctic char in the current era of accelerated climate change.


Sign in / Sign up

Export Citation Format

Share Document