Short-Term Learning and Interocular Transfer in Detour Experiments with Octopuses

1967 ◽  
Vol 47 (3) ◽  
pp. 393-408
Author(s):  
M. J. WELLS

1. Octopuses will make detours down a corridor with opaque walls and will make a correct left-right choice at the far end in order to attack a crab seen to one side of the passage through the transparent windows of a home compartment. 2. In all, 1071 trials were carried out. In 883 of these a detour was completed, rightly or wrongly; in the remaining trials the octopuses failed to complete detours within 5 min. of the start of the trial. 3. The percentage of errors rose with the time spent in the maze. Animals that completed their runs within 20 or 30 sec. of entering the corridor rarely made a mistake; animals that took 2 min. or more, whether due to imposed delays (animal shut in the corridor) or to slow exploration of the maze, made as many errors as correct responses. 4. After removal of the vertical lobe from the brain the octopuses made more errors, particularly in the slower runs. There was also a higher proportion of trials at which they failed to complete a detour at all. These failures are not due to a failure of interocular transfer or to locomotor defects. 6. The results are discussed in relation to the function of the vertical lobe, interocular transfer, the nature of representations of recent events within the optic lobes and the establishment of more permanent memory traces in discrimination experiments.

2009 ◽  
Vol 22 (8) ◽  
pp. 1105-1112 ◽  
Author(s):  
Reinoud Maex ◽  
Volker Steuber

1966 ◽  
Vol 45 (3) ◽  
pp. 383-400
Author(s):  
M. J. WELLS ◽  
J. Z. YOUNG

1. Blinded octopuses were trained to discriminate by touch between rough and smooth spheres, using the arms on one side only. 2. Intact octopuses learned more rapidly than animals with the supraoesophageal brain split by a longitudinal cut. 3. With the brain split before training no side-to-side transfer occurred. Animals operated upon in this way did not discriminate when tested on the untrained side. 4. When intact octopuses were trained on both sides each side appeared to benefit from the experience gained by the other. The effect was difficult to evaluate because most of the errors in the experiments were due to taking the ‘negative’ object, with the result that raising the rate of training itself tends to improve performance by lowering the proportion of takes. 5. Animals trained on one side and then split continued to discriminate on the trained side, though at a reduced level of accuracy. When tested on the untrained side the performance of these animals was variable, depending upon the exact position of the split. The best scores were made by octopuses with some trained-side tissue left in contact with the test side. Animals with exactly medial cuts continued to discriminate, though at a reduced level of accuracy. Octopuses with the untrained side damaged did not discriminate at all. 6. Side-to-side transfer of the effects of tactile training can occur within the inferior frontal system. It can also be demonstrated to occur elsewhere in the supraoesophageal brain if the inferior frontal system has been split. Presumably this other pathway passes through the superior frontal/vertical lobe system. 7. These results are considered in relation to visual experiments on interocular transfer and it is concluded that memory traces are established on both sides of the brain as a result of unilateral training.


Author(s):  
D.N. Collins ◽  
J.N. Turner ◽  
K.O. Brosch ◽  
R.F. Seegal

Polychlorinated biphenyls (PCBs) are a ubiquitous class of environmental pollutants with toxic and hepatocellular effects, including accumulation of fat, proliferated smooth endoplasmic recticulum (SER), and concentric membrane arrays (CMAs) (1-3). The CMAs appear to be a membrane storage and degeneration organelle composed of a large number of concentric membrane layers usually surrounding one or more lipid droplets often with internalized membrane fragments (3). The present study documents liver alteration after a short term single dose exposure to PCBs with high chlorine content, and correlates them with reported animal weights and central nervous system (CNS) measures. In the brain PCB congeners were concentrated in particular regions (4) while catecholamine concentrations were decreased (4-6). Urinary levels of homovanillic acid a dopamine metabolite were evaluated (7).Wistar rats were gavaged with corn oil (6 controls), or with a 1:1 mixture of Aroclor 1254 and 1260 in corn oil at 500 or 1000 mg total PCB/kg (6 at each level).


Author(s):  
Jochen Seitz ◽  
Katharina Bühren ◽  
Georg G. von Polier ◽  
Nicole Heussen ◽  
Beate Herpertz-Dahlmann ◽  
...  

Objective: Acute anorexia nervosa (AN) leads to reduced gray (GM) and white matter (WM) volume in the brain, which however improves again upon restoration of weight. Yet little is known about the extent and clinical correlates of these brain changes, nor do we know much about the time-course and completeness of their recovery. Methods: We conducted a meta-analysis and a qualitative review of all magnetic resonance imaging studies involving volume analyses of the brain in both acute and recovered AN. Results: We identified structural neuroimaging studies with a total of 214 acute AN patients and 177 weight-recovered AN patients. In acute AN, GM was reduced by 5.6% and WM by 3.8% compared to healthy controls (HC). Short-term weight recovery 2–5 months after admission resulted in restitution of about half of the GM aberrations and almost full WM recovery. After 2–8 years of remission GM and WM were nearly normalized, and differences to HC (GM: –1.0%, WM: –0.7%) were no longer significant, although small residual changes could not be ruled out. In the qualitative review some studies found GM volume loss to be associated with cognitive deficits and clinical prognosis. Conclusions: GM and WM were strongly reduced in acute AN. The completeness of brain volume rehabilitation remained equivocal.


2021 ◽  
Vol 22 (9) ◽  
pp. 4511
Author(s):  
Chiara A. De Benedictis ◽  
Claudia Haffke ◽  
Simone Hagmeyer ◽  
Ann Katrin Sauer ◽  
Andreas M. Grabrucker

In the last years, research has shown that zinc ions play an essential role in the physiology of brain function. Zinc acts as a potent neuromodulatory agent and signaling ions, regulating healthy brain development and the function of both neurons and glial cells. Therefore, the concentration of zinc within the brain and its cells is tightly controlled. Zinc transporters are key regulators of (extra-) cellular zinc levels, and deregulation of zinc homeostasis and zinc transporters has been associated with neurodegenerative and neuropsychiatric disorders. However, to date, the presence of specific family members and their subcellular localization within brain cells have not been investigated in detail. Here, we analyzed the expression of all zinc transporters (ZnTs) and Irt-like proteins (ZIPs) in the rat brain. We further used primary rat neurons and rat astrocyte cell lines to differentiate between the expression found in neurons or astrocytes or both. We identified ZIP4 expressed in astrocytes but significantly more so in neurons, a finding that has not been reported previously. In neurons, ZIP4 is localized to synapses and found in a complex with major postsynaptic scaffold proteins of excitatory synapses. Synaptic ZIP4 reacts to short-term fluctuations in local zinc levels. We conclude that ZIP4 may have a so-far undescribed functional role at excitatory postsynapses.


2007 ◽  
Vol 152 (2-3) ◽  
pp. 225-230 ◽  
Author(s):  
P. Kiss ◽  
D. Reglődi ◽  
A. Tamás ◽  
A. Lubics ◽  
I. Lengvári ◽  
...  

1997 ◽  
Vol 84 (2) ◽  
pp. 627-661 ◽  
Author(s):  
Peter Brugger

This article updates Tune's 1964 review of variables influencing human subjects' attempts at generating random sequences of alternatives. It also covers aspects not included in the original review such as randomization behavior by patients with neurological and psychiatric disorders. Relevant work from animal research (spontaneous alternation paradigm) is considered as well. It is conjectured that Tune's explanation of sequential nonrandomness in terms of a limited capacity of short-term memory can no longer be maintained. Rather, interdependence among consecutive choices is considered a consequence of an organism's natural susceptibility to interference. Random generation is thus a complex action which demands complete suppression of any rule-governed behavior. It possibly relies on functions of the frontal lobes but cannot otherwise be “localized” to restricted regions of the brain. Possible developments in the field are briefly discussed, both with respect to basic experiments regarding the nature of behavioral nonrandomness and to potential applications of random-generation tasks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haoran Ren ◽  
Liangyan Zou ◽  
Laishuan Wang ◽  
Chunmei Lu ◽  
Yafei Yuan ◽  
...  

Music contains substantial contents that humans can perceive and thus has the capability to evoke positive emotions. Even though neonatal intensive care units (NICUs) can provide preterm infants a developmental environment, they still cannot fully simulate the environment in the womb. The reduced maternal care would increase stress levels in premature infants. Fortunately, music intervention has been proved that it can improve the NICU environment, such as stabilize the heart rate and the respiratory rate, reduce the incidence of apnea, and improve feeding. However, the effects of music therapy on the brain development of preterm infants need to be further investigated. In this paper, we evaluated the influence of short-term music therapy on the brain functions of preterm infants measured by functional near-infrared spectroscopy (fNIRS). We began by investigating how premature babies perceive structural information of music by calculating the correlations between music features and fNIRS signals. Then, the influences of short-term music therapy on brain functions were evaluated by comparing the resting-state functional connectivity before and after the short-term music therapy. The results show that distinct brain regions are responsible for processing corresponding musical features, indicating that preterm infants have the capability to process the complex musical content. However, the results of network analysis show that short-term music intervention is insufficient to cause the changes in cerebral functional connectivity. Therefore, long-term music therapy may be required to achieve the deserved effects on brain functional connectivity.


Author(s):  
Valentina Tocchioni ◽  
Alessandra Petrucci ◽  
Alessandra Minello

In the last years, there has been a large increase in high-educated and high-skilled people’s mobility as a consequence of the internationalization and globalization, the weakening of research and university systems of sending countries (the “brain drain” process), the increase in skilled demand and improvements in higher education of host countries (the “brain gain” process). At the micro-level, academic mobility has positive consequences on occupational prospects and careers of researchers, both in the short- and long- run. Nevertheless, numerous research studies have demonstrated the challenges of engaging in international academic mobility for people with caring responsibilities, particularly women. Using Italian data on occupational conditions of PhDs collected in 2018 by Istat and modelling multinomial logistic regression analyses, we intend to verify if female researchers are associated with a lower international mobility irrespective their field of study, and the extent to which gender interacts differently in the various fields of study in affecting the probability of moving abroad after PhD qualification. Also, the distinction between long-term and short-term mobility, which has been mainly neglected in the literature concentrating on longer stays, has taken into account. In this respect, short-term mobility is a potentially high-value investment that may be pursued also by those researchers and scientists who cannot move for longer periods, such as women with caring responsibilities. In the literature, it is acknowledged that an experience abroad during early career may have positive effects on future occupational prospects. With our work, we intend to shed light on potential disparities on moving abroad that may exist among researchers in their early career by gender, and which could contribute to leave behind women in academia.


Sign in / Sign up

Export Citation Format

Share Document