Aerodynamics of Gliding Flight in a Falcon and Other Birds

1970 ◽  
Vol 52 (2) ◽  
pp. 345-367 ◽  
Author(s):  
VANCE A. TUCKER ◽  
G. CHRISTIAN PARROTT

1. A live laggar falcon (Falco jugger) glided in a wind tunnel at speeds between 6.6 and 15.9 m./sec. The bird had a maximum lift to drag ratio (L/D) of 10 at a speed of 12.5 m./sec. As the falcon increased its air speed at a given glide angle, it reduced its wing span, wing area and lift coefficient. 2. A model aircraft with about the same wingspan as the falcon had a maximum L/D value of 10. 3. Published measurements of the aerodynamic characteristics of gliding birds are summarized by presenting them in a diagram showing air speed, sinking speed and L/D values. Data for a high-performance sailplane are included. The soaring birds had maximum L/D values near 10, or about one quarter that of the sailplane. The birds glided more slowly than the sailplane and had about the same sinking speed. 4. The ‘equivalent parasite area’ method used by aircraft designers to estimate parasite drag was modified for use with gliding birds, and empirical data are presented to provide a means of predicting the gliding performance of a bird in the absence of wind-tunnel tests. 5. The birds in this study had conventional values for parasite drag. Technical errors seem responsible for published claims of unusually low parasite drag values in a vulture. 6. The falcon adjusted its wing span in flight to achieve nearly the maximum possible L/D value over its range of gliding speeds. 7. The maximum terminal speed of the falcon in a vertical dive is estimated to be 100 m./sec.

1990 ◽  
Vol 149 (1) ◽  
pp. 469-489 ◽  
Author(s):  
VANCE A. TUCKER ◽  
CARLTON HEINE

1. A Harris' hawk with a mass of 0.702 kg and a maximum wing span of 1.02 m glided freely in a wind tunnel at air speeds between 6.1 and 16.2ms−1. The glide angle varied from 8.5% at the slowest speed to a minimum of 5% at speeds between 8.0 and 14.7 ms−1. The maximum ratio of lift to drag was 10.9 and the minimum sinking speed was 0.81ms−1 2. Wing span decreased when either air speed or glide angle increased. Wing area was a parabolic function of wing span 3. Lift and profile drag coefficients of the wings fell in a polar area similar to that for a laggar falcon (Falco jugger) and a black vulture (Coragyps atratus). A single polar curve relating lift coefficients to minimum profile drag coefficients can predict the maximum gliding performance of all three birds when used with a mathematical model for gliding flight 4. The parasite drag values that have been used with the model are probably too high. Thus, the profile drag coefficients determined from the polar curve mentioned above are too low, and the predicted wing spans for gliding at maximum performance are too large. The predicted curve for maximum gliding performance is relatively unaffected 5. The maximum lift coefficient for the Harris' hawk in the wind tunnel was 1.6. This value is probably less than the maximum attainable, since the hawk's wings never appeared to stall. The best estimate of the minimum profile drag coefficient is 0.026 at a lift coefficient of 0.60.


1970 ◽  
Vol 53 (2) ◽  
pp. 363-374 ◽  
Author(s):  
G. CHRISTIAN PARROTT

1. A black vulture (mass = 1.79 kg) gliding freely in a wind tunnel adjusted its wing span and wing area as its air speed and glide angle changed from 9.9 to 16.8 m/s and from 4.8° to 7.9°, respectively. 2. The minimum sinking speed was 1.09 m/s at an air speed of 11.3 m/s. 3. The maximum ratio of lift to drag forces was 11.6 at an air speed of 13.9 m/s. 4. Parasite drag coefficients for the vulture are similar to those for conventional airfoils and do not support the contention that black vultures have unusually low values of parasite drag.


1987 ◽  
Vol 133 (1) ◽  
pp. 33-58 ◽  
Author(s):  
VANCE A. TUCKER

The equilibrium gliding performance of a bird is described by the relationship between sinking speed (V8) and air speed (V). When V9 is plotted against V, the points fall in a ‘performance area’ because the wing span is changed during gliding. The lowest V3 for each V in the performance area defines a ‘maximum performance curve’. This curve can be predicted by a mathematical model that changes the wing span, area and profile drag coefficient (CD, pr) of a hypothetical bird to minimize drag. The model can be evaluated for a particular species given (a) a linear function relating wing area to wing span, and (b) a ‘polar curve’ that relates CDpr and the lift coefficient (CL) of the wings. For rigid wings, a single polar curve relates CDpr to CL values at a given Reynolds number. The position and shape of the polar curve depend on the aerofoil section of the wing and the Reynolds number. In contrast, the adjustable wings of a laggar falcon (Falco jugger) and a black vulture (Coragyps atratus) gliding in a wind tunnel have CL, and CD,pr values that fall in a ‘polar area’ rather than on a curve. The minimum values of CD,pr at each CL bound the polar area and define a polar curve that is suitable for evaluating the model. Although the falcon and the vulture have wings that are markedly different in appearance, the data for either bird are enclosed by the same polar area, and fitted by the same polar curve for minimum CD,pr at each CL value. This curve is a composite of the polar curves for rigid wings with aerofoils similar to those found in avian wings. These observations suggest that the polar curves of other gliding birds may be similar to that of the falcon and the vulture. Other polar curves are defined by CL and CD,pr values for the falcon and the vulture gliding at a constant speed but at different glide angles. Each speed has a different polar curve; but for a given speed, the same polar curve fits the data foreither bird. The falcon and the vulture gliding in the wind tunnel at a given speed were found to increase their drag by decreasing their wing span. This change increases induced drag and probably increases CD,pr for the inner parts of the wing because of an unusual property of bird-like aerofoil sections: wings with such sections have minimum values of CDpr at CL values near 1, while conventional wings have minimum values of CD,Pr at CL values near 0.


1971 ◽  
Vol 55 (3) ◽  
pp. 833-845 ◽  
Author(s):  
C. J. PENNYCUICK

1. A bat was trained to fly in a tilting wind tunnel. Stereoscopic photographs were taken, both by reflected and by transmitted light, and measurements of best gliding angle were made. 2. Variation of wing span and area at different speeds was much less than in birds. This is attributed to the construction of the wing, which prevents the bat from folding back the manus in flight, because this would lead to collapse of the plagiopatagium. 3. The trailing edge of the wing is normally deflected upwards in flight, at least in the distal parts. This is interpreted as providing longitudinal stability. The plagiopatagialis proprii muscles appear to act as an elevator, by deflecting the trailing edge of the plagiopatagium upwards. 4. The speed range over which the bat could glide was 5·3-11·0 m/s. Its maximum lift coefficient was 1·5, and its best glide ratio 6·8:1. The Reynolds number range, based on mean chord, was 3·26 x 104 to 6·79 x 104. 5. A simple regression analysis of the glide polar indicated a very high span efficiency factor (k) and low wing profile drag coefficient (Cdp). On the other hand, a drag analysis on the assumption that k = 1 leads to an improbably large increase in the estimated Cdp at low speeds. It is suggested that the correct interpretation probably lies between these extremes, with k ≊ 1·5; Cdp would then be about 0·02 at high speeds, rising to somewhat over 0·1 at the minimum speed. 6. It would appear that the bat is not so good as a pigeon at fast gliding, but better at low-speed manoeuvring. On most points of performance, however, the two are remarkably similar.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012206
Author(s):  
V I Chernousov ◽  
A A Krutov ◽  
E A Pigusov

Abstract This paper presents the experiment results of modelling the one engine failure at the landing mode on a model of a light transport airplane in the T-102 TsAGI low speed wind tunnel. The effect of starboard and port engines failure on the aerodynamic characteristics and stability of the model is researched. The model maximum lift coefficient is reduced about ≈8% and there are the same moments in roll and yaw for starboard and port engines failure case. It was found that the failure of any engine has little impact on the efficiency of control surfaces. Approaches of compensation of forces and moments arising in the engine failure case were investigated.


2014 ◽  
Vol 553 ◽  
pp. 255-260
Author(s):  
Viktor Šajn ◽  
Igor Petrović ◽  
Franc Kosel

In the paper, numerical and experimental study of low Reynolds number airflow around the deformable membrane airfoil (DMA) is presented. Simulations of a fluid-structure interaction between the fluid and the DMA were performed. In the experiment, the DMA model was made from a thin PVC sheet, which was wrapped around the steel rod at the leading and trailing edge. Measurements were performed in a wind tunnel at a chord Reynolds number of 85.7·103, over the angle of attack range from 0° to 15° and DMA shortening ratio from 0.025 to 0.150. Simulations were in an agreement with the experiment, since the average relative difference of coefficient of lift was smaller than 7.3%. For the same value of Reynolds number, DMA shows improved lift coefficient Cy= 2.18, compared to standard rigid airfoils.


2012 ◽  
Vol 260-261 ◽  
pp. 125-129
Author(s):  
Xin Zi Tang ◽  
Xu Zhang ◽  
Rui Tao Peng ◽  
Xiong Wei Liu

High lift and low drag are desirable for wind turbine blade airfoils. The performance of a high lift airfoil at high Reynolds number (Re) for large wind turbine blades is different from that at low Re number for small wind turbine blades. This paper investigates the performance of a high lift airfoil DU93-W-210 at high Re number in low Re number flows through wind tunnel testing. A series of low speed wind tunnel tests were conducted in a subsonic low turbulence closed return wind tunnel at the Re number from 2×105to 5×105. The results show that the maximum lift, minimum drag and stall angle differ at different Re numbers. Prior to the onset of stall, the lift coefficient increases linearly and the slope of the lift coefficient curve is larger at a higher Re number, the drag coefficient goes up gradually as angle of attack increases for these low Re numbers, meanwhile the stall angle moves from 14° to 12° while the Re number changes from 2×105to 5×105.


2012 ◽  
Vol 225 ◽  
pp. 38-42
Author(s):  
Zurriati Mohd Ali ◽  
Wahyu Kuntjoro ◽  
Wisnoe Wirachman

This paper presents a study on the effect of canard setting angle on the aerodynamic characteristic of a Blended Wing Body (BWB). Canard effects to BWB aerodynamic characteristics are not widely investigated. Hence the focus of the study is to investigate the variations of lifts, drags and moments when the angles of attack are varied at different canard setting angles. Wind tunnel tests were performed on BWB aircraft with canard setting angles,  ranging from -20˚ to 20˚. Angles of attack,  were varied from -10˚ to 10˚. Aspect ratio and canard planform area were kept fixed. All tests were conducted in the subsonic wind tunnel at Universiti Teknologi MARA, at Mach number of 0.1. The streamlines flow, at the upper surface of the canard was visualized using mini tuft. Result shows that the lift coefficient does not change much with different canard setting angles. As expected, the lift coefficient increases with increasing angles of attack at any canard setting angle. In general, the moment coefficient increases as the canard setting angle is increased. The results obtained in this research will be of importance to the understanding of aerodynamic behavior of BWB employing canard in its configuration.


2012 ◽  
Vol 271-272 ◽  
pp. 791-796
Author(s):  
Xin Hua ◽  
Wei Shao ◽  
Chun Hua Zhang ◽  
Zhi Qiang Zhang

Wing aircraft is one of the major components to generate lift, in today's energy shortage, design the high lift-to-drag ratio wing is the goal pursued by, The author in the exploration of bionic airfoil aerodynamic characteristics on the basis of, which will be applied to straight wing design so as to improve the aerodynamic performance of aircraft.Our research mainly includes two aspects: first, the use of imitation seagull airfoil and NACA4412 airfoil are designed into the straight wing. The use of FLUENT software in Re=300000condition carries on the numerical simulation results show that the ratio of gull wing airfoil than NACA4412 lift coefficient increased by 13%, while the lift to drag ratio,is improved by 46.83%. Then, using the similarity principle, the wing scale, was tested in a wind tunnel test, the results obtained with the simulation are consistent. Airfoil design for the design of high performance wing opened a new way.


Sign in / Sign up

Export Citation Format

Share Document